PROBABILISTIC MODELS IN MODERN AI

1. FOUuNDATIONS: WHAT AI MEANS

e What is the goal of AI? To construct dynamical systems that will pro-
cess information, appropriately reacting to inputs, and to have some meta-
program explain how this dynamical system will be shaped from an environ-
ment (either static, with data, or dynamic, or both). They will construct a
representation of the data that allows for some downstream tasks that are
not, describable using usual programs

e Modern Al is about a search in the space of programs, and the identification
of those that will do well.

1.1. Goals of Modern Al.

e A central long-term goal for Al is to create programs that perform tasks
that require intelligence, following instructions we cannot explicitly write
down.

e Modern Al seeks to build programs that autonomously construct represen-
tations of data and act on them under uncertainty.

e These programs must be able to play games, interact with streams of in-
formation and do clever things.

e In the end, these programs are just a family of functions. The thing is that
are quite many functions out there; how do we find the right ones is not
completely trivial.

e To find the right functions, we need an environment: either static, or dy-
namic; the earlier is already the source of many exciting things, while the
latter is obviously at the heart of current developments.

e It is not very important to define intelligence, but for us intelligence is the
ability to treat streams of information and to find interesting things/patterns
in them, with regards to some goals, which can be explicit or implicit, known
in advance or unforeseen.

e Some central tasks that drive the construction of intelligent structures are
prediction, compression, denoising; to perform those, a training algorithm
will typically need to find patterns in data.

e What are the branches of modern AI?

— Symbolic/Knowledge-Based
* Search, planning
* Kernel methods
— Machine Learning
* Supervised: we have a training dataset of data points with labels,
and we try to fit the labels
x Unsupervised: we have a training dataset made of samples, and
we try to model the dataset
* Self-Supervised: we have a training set where data points can
be used as labels for others
1
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* Reinforcement Learning: we have an environment that responds
to actions
* Miscellaneous: semi-supervised learning, transfer learning, on-
line learning, meta-learning
Some other (more or less useful) dichotomies:

— Deterministic vs probabilistic algorithms: is the output of the Al sys-
tem deterministic or random? Most neural networks output determin-
istic outputs, but these can be fed into (or be fed to) some random
variables, to generate random outputs.

— Generative vs discriminative algorithms: we can either sample from
some data, or try to infer parameters behind the data.

— Static versus dynamic environment: a dataset is e.g. a static environ-
ment (we don’t choose what we see), while a game is e.g. a dynamic
environment

Information theory is the foundation of what we do in modern AI and how
we work with this course. Information theory is about what can be done
theoretically (as opposed to algorithmically or practically) with information
at our disposal. Information theory gives a baseline.

Modern Al is in my view at the intersection of information theory and
practical optimization. Information theory is in some sense the limit of
what we can do, and it also suggests some general optimization tasks we
can perform. From there, we obtain objects that can be transformed into
e.g. intelligent agents.

1.2. Modern AI in a Nutshell.

The most exciting general tasks devised by information theory are predic-
tion, compression, denoising; and they turn out to be the most exciting
ones to train AT models

These three tasks allow one to transform to formulate optimization problem
to train e.g. neural networks: we optimize on a space of functions in regard
of such tasks. (generally speaking, optimization problems can be applied
to labeled or unlabeled data or to environments). And this optimization
process yields models with some capabilities. Then there is the question of
how we leverage these capabilities to do things.

1.3. What this course will be about.

We will start with the study of prediction and lossless compression as
information-theoretic tasks.

e Then we will study neural networks, which provide a means to optimize.
e Later, we will discuss lossy compression and denoising. This will lead us to

diffusion models.

e We will finish by discussing reinforcement learning, causality, and games.
e This is will lead us to the ‘universal AGI’ ideas that are at the foundation

of the current wave of the field.

2. PREDICTION AND LOSSLESS COMPRESSION

We start with prediction and lossless compression, two fundamentally re-
lated information-theoretic tasks. These lead (once we can optimize prop-
erly) to self-supervised learning, including LLMs, other things.
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2.1. Machine Learning and Prediction.

Intelligence has often been likened to the ability to predict, not only for
machine learning, but also for animal and human intelligence. For instance,
it is clearly one of the mechanism by which neurons learn, and ‘predicting
the next symbol in a sequence’ is emblematic of 1Q tests.

In general, if we are to optimize something (as we will discuss with neu-
ral networks) we need a clear, universal objective, that can be attached to
data. If the data has a time structure or a space structure, we can nat-
urally formulate prediction tasks. The prediction task is extremely deep,
as performing it well entails a good model of the world that generates the
data. Next-token prediction, infilling, backward prediction are all part of
that galaxy of tasks.

Maybe we can start with an example: if we compute the first terms of a
mathematical sequence... if we give 6.2831853 and we ask what is the next
digit, how do we answer this? It would make sense to say that the answer is
0... why? This is not necessarily the simplest task, but an explanation here
would be that 27 is a good summary of the data, and it is a low-complexity
one; again, as we will see, it corresponds to compressing the data.

For textual data, supervised learning can be viewed as particular case of
prediction, if we make the labels follow the data, e.g. if we write “z1 :: y1
To i Yo x3 1 Y3 ..., and then we provide a x :: and ask the model to predict
after, it should predict y. This is in fact how we would use a foundation
LLM for many prediction tasks.

There are many closely related tasks, in particular denoising, which is also
at the heart of information theory: if we were to noise some digits of 27,
an intelligent algorithm should still be able to denoise them, based on com-
pression ideas, for instance. But for now, it is good to start with prediction,
as it is conceptually simpler and it yields some of the very best results in
practice.

2.2. Scoring Rules.

Note: the introduction of scoring rules is a bit unusual as a treatment of
AT We follow this road as a means to get into information theory without
knowing information theory a priori. This is based on questions and results
that were already available at least four hundreds years ago (Pascal and
Huygens talked about it, the Bernoulli worked on it), but were maybe not
pushed later. The theory of probability was in large part developed in
the context of gambling, and prediction and gambling are very obviously
related.

What is a prediction for a random variable? Assume for simplicity and
concreteness that it can only take a finite number of values. Predicting
consists in delivering probabilities for the various outcomes of that variable,
as available to an agent based on their information. The goal of a scoring
rule is to reward an agent outputting predictions based on their predictions
and on the outcome.

Of course, the outcome of a random variable is a single value, and this is
the only feedback about how good a prediction was going to be. We can
still try to make the rewards so as to elicit the right reward, i.e. to make
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it so that the agent maximizes their reward when they give the correct
probabilities.

So, let us formalize this: an agent outputs probabilities @ = (m1,...,m,)
for the possible values {1,...,n} that a random variable could take. The
space of possible outputs is the simplex A, C R™ defined as the set of
n-dimensional vectors with nonnegative entries summing up to 1.

Then a scoring rule s takes as input 7 and the actual (random) outcome of
the observed variable i to yield a reward s (7, ).

A scoring rule is called proper if the only maximizer of the expectation

Ez[s(7,-)] = Zpis(ﬂ'i,i),

assuming ‘true’ probabilites pi,...,p, for the outcomes, is when @ = p.
The ‘subjective’ view of this question is that as much as agents don’t know
the true probabilities, they are incentivized to disclose their own ‘beliefs’:
their goal is to maximize their (perceived) expectation.

Note that this point of view is very much related to a deep belief at the
core of modern Al: subjectivism /bayesianism, which itself is at the heart of
information theory. The idea is not really that there is mathematical model
of the world that we can define and study mathematically, just that there
are models of reality, that there is a feedback, and that we should just
update the beliefs based on feedback. Of course, this is more a ‘general
vision’ than anything else: it is not forbidden to assume that there is a
more or less correct vision of the world; it is just not to be assumed that it
can be defined accurately or accessed in any way.

Ok... so how do we design proper scoring rules? A naive idea that is
bad (but probably used at places) is to reward s (7, i) = m; : this seems
reasonable, because if the agent gives higher probabilities to more likely
events, their expected score increases... the problem is that they increase
beyond the true probabilities: it is easy to see that the optimal strategy is
in fact to output m; = 1,=; if p; > py, for all k # j (exercise: what is the
solution if there is no such p;7).

What are some examples of proper scoring rules?

— The quadratic scoring rule, for instance — (1 — wi)z—zk# = —||7—
5;||? , where d; is the i-th canonical basis vector (or ‘one-hot’ vector)
with zero entries at k # j and entry 1 at k = j.

— The quartic scoring rule: 47 — 33",

— The logarithmic scoring rule (the most beautiful of all): log ;.

In the exercises, you saw the beautiful characterization of the proper scoring
rules in terms of Bregman divergences:

— Given a smooth strictly convex function G : A,, = R, we can define a
proper scoring rule by

s(7,1) = G (%) + (6; — 7, VG (7))

— First note that when taking expectation, for fixed p, the only ‘random

quantity’ in this expectation that we need to average is ) . p; (9;, VG (7)) =

(P, VG ().
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— Define the Savage representation S (7, 7) as the expected return E; [s (7, -)]

G () + (p— 7, VG (T)).

— Why is our scoring rule, now? A small cool twist (related to convex
duality): for a fixed 7, as a function of p, we have an affine function
that is tangent to the graph of G, and so, since convex functions are
always the sup of the affine functions that are tangent to their graphs,
S(p,®) < G(7) for all g€ A,,, and in fact we have strict inequality if
p# .

— So, now if we fix p’ and optimize 7 instead, we find that the best
expected return is by taking 7 = p.

— Conversely, if we have an expected return function that derives from
a proper scoring rule, we have, at every fixed p, some Savage function
S (p,7); we can define the ‘entropy’ H (p) as supz S (p, 7).

— Note that H (p) = (p, s (P, -))-

— For every fixed 7, we have S (p,7) < H (p) , and hence (for fixed 7
again), the affine function S (-, 7) lies below H (), and is tangent at
p = 7. Hence, H is convex function of p (it is the sup of functions
depending on 7 lying below it).

— Hence (assuming differentiability and strict properness), we get that
the gradient at p' = 7 of the affine function S (-, 7) matches that of

— Now, if we evaluate how much we get rewarded in case of outcome 1,
we collapse the probability to g = §;, and we get S (;,7) = H (%) +
(VH (7),0; — ).

— So, we have found that the scoring rule should be s (7,i) = H (%) +
(0; =7, VH (7))

So (modulo differentiability assumptions), we have found a complete char-
acterization of scoring rules!

Now, if we ask for locality, i.e. that s (7, %) only depends on 7; (and not the
other m;’s for j # i), we find that the only solution is s (7,7) = alogm; + 3
for some a > 0,5 € R.

As we will see, this leads us to information theory.

2.3. Compression.

In the modern era, if there is a single task that is now understood to be
associated with intelligence/understanding, it is compression. This was
mostly initiated by Claude Shannon, although the problem was somehow
considered before, with e.g. the Morse code representing some attempt to
make communication more efficient.

The ability to synthesize observations about the world down to a few prin-
ciples is what physics is (abstractly) about, to some extent.

There is some theoretical ideas as to why the shortest explanation is the
best (Occam’s Razor)]

[Entropy, conditional entropy, cross-entropy, mutual information| [Basic
properties|

e [Compression] [Summarization] [Synthesis| [Summarize the internet datal
o [Lossless vs Lossy| [Problem of lossy is how to define what we need| [Focus

on lossless in this course, because it is easier, and it applies to text]
— {Huffman, Shannon codings} {McMillan Inequality}
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[Source coding theorem| [Statement: if there is this much information in a
channel, you can find a code that compresses it with that many bits| [Proof:
one direction, one can use some kind of coding, the other direction is based
on the typical sets]
o [Imperfect coding| [Cross-entropy and practical compression| [Kullback Leibler
and Gibbs inequality] [Very related to prediction is compression]
e [Classical lossless compression]
— {LZ Compression} {LZ compresses ergodic things optimally } {Burrows-
Wheeler} {Invertibility of BW} {Good properties on text}
e [Arithmetic coding] [Idea]
— {Optimality proof}
e [Bits back coding] [Idea] [Bits back coding chaining]
e [Asymmetric numeral systems| [Construction and inversion] [What is the
point of this|
— {Proof that construction and inversion work}
e [Now, if we allow for lossy compression, we get into the realm of denoising]

2.4. Algorithmic Information Theory.

e [The information theory point of view studies how right we could ever be]
[The information theoretic lens looks at data and tells us how much there
is to do]

e [There is the question of what we could ever know| [Note that it is not
because an information is in principle available that it can be found]

e [Why does the information point of view prove to be more useful?] [It
abstracts away the specific algorithm that we use; as opposed to statistics,
which tends to focus on constructed quantities| [Information theory is about
what could be achieved, theoretically]

o [Kolomogorov-Solomonoff-Chaitin foundations] [Motivation]|

e [Kolmogorov complexity definition] [Conditional Kolmogorov complexity]
[Universality of Kolmogorov complexity| [Upper bound on conditional com-
plexity by length] [Upper and lower bounds on Kolmogorov complexity]
{What we think is unlikely as a random configuration} [The shortest de-
scription is upper bounded by the entropy| [The entropy is upper bounded
by entropy by Kraft’s inequality and source coding]

e [Martin-Lof probability| [Key Concepts| [Examples]

e [Minimum Description Length| [Circuit Length Description|

e [Understand the world generally speaking] [How to process information in
a computable way]

e [Information theory comes with a few tasks: compressing and denoising)]
[Compressing is understanding]

e [Solomonoff induction] [What Solomonoff’s induction is about] [Why it is
uncomputable]

— {Kolmogorov Sampler By Donoho}

e [Once we have done this thing, there is the question of what we could do

with that| [Later led to AiXij]

2.5. Where this will go (later in the course).

o [Universal AGI ideas]
e [AiXi: a theory of RL based upon Solonomoff ideas]
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e [Godel Machines]
e [Now in practice, what do we do is inspired by this vision]

3. NEURAL NETWORKS

3.1. Architecture.

[The idea is to compose linear maps and nonlinear mapsj

[We take vectors as inputs, and we get vectors as outputs| [To do something
interesting, we then need some code that uses that] [For instance, for LLMs,
the output would be used to sample tokens]

[Universal approximation results]

[Why the architecture is not the only important thing]

[Early misconceptions about neural networks|

3.2. Optimization.

e [Need to fix a selection process with an objective| [The true objective may
be different, but we need to select a decent surrogate objective|
[Saddlepoint problem| [Random initialization| [Gradient descent] [Adam]
[The specification of a model must involve the optimization task]

[How long do we run the optimization?|

[Abstract formulation of gradient with a kernel]

[Question of large neural networks| [Wrong conjectures|

3.3. Infinite-Width Limit.

[Naive infinite-width limit blows up]
[Activation kernel scaling regime]
[Neural tangent kernel description]
[Law of large numbers|

[Stability during training|

3.4. Kernel Description.

[The infinite width of neural networks in the kernel regime]
[The activation kernel]

[Random features]

[Gaussian process prior and posterior for kernels]

3.5. Consequences.

[Global minima]
[Double-descent phenomenon]
[Generalization]

[Fine-tuning regime]

4. LARGE LANGUAGE MODELS

4.1. Auto-Regressive Language Models.

o [Loss function]
e [Information extraction]

4.2. LSTMs, GRUs, Transformers, Mamba.

o [Transformers| [Started with Neural Turing Machines| [Then Bert] [Then
GPT]
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