ANALYSE III TEST BLANC

5 DÉCEMBRE 2019

Nom et prénom:	SCIPER:
Nom et prenom:	

- Matériel autorisé: aucun (pas de polycopié, pas de calculatrice)
- Les problèmes sont ordonnés par ordre croissant de difficulté. Le dernier problème est difficile.
- Vous pouvez utiliser sans les reprouver les énoncés vus en classe et en exercices, à condition de les énoncer
- Vous avez 10 problèmes, chaque problème vaut 7 points. Pour les questions vrai/faux, un point pour la bonne réponse, 6 points pour la preuve (si vrai) ou le contre-exemple (si faux).
- Vous pouvez écrire sur des feuilles de brouillon, mais les réponses qui seront corrigées devront figurer sur les feuilles.
- On écrit $\mathbb{H} = \{z \in \mathbb{C} : \Im \mathfrak{m}(z) > 0\}, \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- (1) Montrer que

$$\int_0^1 e^t dt + i \int_0^1 e^{1+it} dt = -i \int_{\pi/2}^{\pi} e^{(1+e^{it})} e^{it} dt.$$

(a) Le membre de droite définit l'intégrale de contour de la fonction e^z de 0 à 1+i et le deuxième aussi, le long de deux contours différents. Comme la fonction exponentielle n'a pas de pôle, l'intégrale ne dépend pas du contour.

- (2) Soit $\omega \in \mathbb{R}$, calculer la transformation de Laplace de la fonction $f: \mathbb{R}^+ \to \mathbb{R}$, $f(t) = \cos(\omega t)$.

 (a) On a $\mathcal{L}[f](s) = \int_0^\infty \cos(\omega t) e^{-st} dt = \frac{1}{2} (\int_0^\infty e^{-(s+i\omega)t} dt + \int_0^\infty e^{-(s-i\omega)t} dt)$ les integral ci-dessu existent si $\Re \mathfrak{e}(s+i\omega)$

$$\mathcal{L}[f](s) = \frac{1}{2}(\int_0^\infty e^{-(s+i\omega)t}dt + \int_0^\infty e^{-(s-i\omega)t}dt) = \frac{1}{2}(\frac{1}{s+i\omega} + \frac{1}{s-i\omega}) = \frac{s}{s^2+\omega^2}.$$

(3) Si $f: \overline{\mathbb{H}} \to \mathbb{C}$ (où $\overline{\mathbb{H}} = \mathbb{H} \cup \mathbb{R}$) une fonction continue telle que $f: \mathbb{H} \to \mathbb{C}$ est holomorphe montrer que $\tilde{f}: \mathbb{H}_- \to \mathbb{C}$

$$\tilde{f}(z) := \bar{f}(\bar{z})$$

est holomorphe, où \bar{z} désigne le conjugé complexe et $\mathbb{H}_{-}=\{z\in\mathbb{C}:\Im\mathfrak{m}z<0\}.$

(a) Il est clair que c'est une fonction \mathcal{C}^1 ; il suffit de vérifier les équations de Cauchy-Riemann: pour x+iy avec $x \in \mathbb{R}, y > 0$

$$\begin{split} \partial_x \Re \mathfrak{e} \left(f \left(x - i y \right) \right) &= \partial_x \Re \mathfrak{e} \left(f \left(x + i y \right) \right) \\ &= \partial_y \Im \mathfrak{m} \left(f \left(x + i y \right) \right) \\ &= -\partial_y \Im \mathfrak{m} \left(f \left(x - i y \right) \right) \\ &= \partial_y \Im \mathfrak{m} \left(\bar{f} \left(x - i y \right) \right) \end{split}$$

et de même

$$\begin{split} \partial_y \Re \mathfrak{e} \left(f \left(x - i y \right) \right) &= \partial_y \Re \mathfrak{e} \left(f \left(x + i y \right) \right) \\ &= -\partial_x \Im \mathfrak{m} \left(f \left(x + i y \right) \right) \\ &= -\partial_x \Im \mathfrak{m} \left(f \left(x - i y \right) \right) \\ &= -\partial_x \Im \mathfrak{m} \left(\bar{f} \left(x - i y \right) \right) \end{split}$$

(4) Si $(f_n)_{n\geq 0}$ est une suite de fonctions holomorphes $\mathbb{C}\to\mathbb{C}$ avec $f_n\to f$ est avec $f_n,f\neq 0$ sur $\partial\mathbb{D}$ montrer que

$$\sum_{z \in \mathbb{D} \cap \mathsf{z\acute{e}ros}(f_n)} \nu_z\left(f_n\right) \underset{n \to \infty}{\longrightarrow} \sum_{z \in \mathbb{D} \cap \mathsf{z\acute{e}ros}(f)} \nu_z\left(f\right),$$

où $\nu_{z}\left(f\right)$ dénote l'ordre (la multiplicité) du zéro de f en z.

(a) Cela suit du théorème des résidus appliqué à $\frac{f'_n}{f_n}$ qu'on intègre sur $\partial \mathbb{D}$ (où tout se passe bien car $f_n \neq 0$ et la limite est non nulle); déjà vu en cours.

(5)	Soit $f: \mathbb{D} \to \mathbb{C}$ une	e fonction holomorphe nor	constante;	montrer	que $\Re \mathfrak{e}\left(f\right)$	ne peut pa	as avoir de	minimum o	ou de
	$\max \operatorname{maximum} \operatorname{sur} \mathbb{D}.$								

(a) On pose $g = e^f$, $h = e^{-f}$, et on a que $|g| = e^{\Re \mathfrak{e}(f)}$ et $|h| = e^{-\Re \mathfrak{e}(f)}$ ne peuvent pas avoir de maximum sur \mathbb{D} ; comme $x \mapsto e^x$ est monotone sur les réels, on déduit le résultat.

(6) Si $f: \mathbb{C}^* \to \mathbb{C}$ est une fonction holomorphe qui s'annule en $\frac{1}{n}$ pour tout $n \ge 1$, est-il toujours vrai que f est nulle? (a) Non, on peut prendre la fonction $\sin\left(\frac{\pi}{z}\right)$.

(7)	Trouver une fonction	n entière telle d	aue	f(z))=w a un	nombre inf	ini de solutions	pour tout	$w \in \mathbb{C}$ et	justifier.
١	٠,	Trodict dire removed	- 01101010 00110 0	1 ~~ .	, (~	, ~ ~ ~ ~ ~ ~ ~		TITE GO DOLGGIOID	pour cours	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.] 000 01110

- (a) La fonction exponentielle prend toutes les valeurs sauf 0, un nombre infini de fois (car elle est $2\pi i$ -périodique). Si on soustrait 1 et qu'on met au carré, on prend toutes les valeurs $z \mapsto (e^z - 1)^2$ avec la même périodicité. (b) Ceci dit, la fonction $z \mapsto \sin z$ convient très bien (mais il faut connaître quelques formules trigonométriques).

- (8) Soit $f: \mathbb{C}^* \to \mathbb{C}$ une fonction holomorphe telle que $z^2 f(z) \to 0$ quand $|z| \to +\infty$. Montrer que le résidu de f en 0
 - (a) Le résidu est donné par $\frac{1}{2\pi i} \int_{\partial D(0,\alpha)} f(z) dz$ pour tout $\alpha > 0$. En prenant $\alpha \to +\infty$, on voit que l'intégrale tend vers 0.

- (9) Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe injective. Montrer que f est surjective.
 - (a) On a que f est une application conforme sur son image.
 - (b) L'image de f est simplement connexe et elle doit être égale à \mathbb{C} sinon on pourrait utiliser le théorème de l'application conforme de Riemann pour envoyer cette image sur \mathbb{D} et on aurait une fonction entière bornée qui serait constante, ce qui serait absurde.

(10) Soient $z_1, \ldots, z_{2n} \in \mathbb{C}$ des nombres complexes distincts et soit M la matrice antisymétrique $2n \times 2n$ avec coefficients $m_{ij} = \frac{1}{z_i - z_j}$ pour $i \neq j$ et $m_{ii} = 0$. Montrer par récurrence que

$$\det M = \sum_{\sigma} \frac{1}{(x_{\sigma(1)} - x_{\sigma(2)})^2 \cdots (x_{\sigma(2n-1)} - x_{\sigma(2n)})^2}$$

où la somme est sur tous les partitions $\{\{\sigma(1),\sigma(2)\},\dots\{\sigma(2n-1),\sigma(2n)\}\}\$ de l'ensemble $\{1,\dots,2n\}$ en n sous-ensembles de 2 éléments telles que $\sigma(2j-1)<\sigma(2j)$ pour tous $j=1,\dots,n$.

(a) Preuve: supposons la formule vraie pour n. En fonction de z_1 , le déterminant est une fonction rationnelle avec un pôle double en z_2 ; on peut écrire

$$\det M = \frac{c_{-2}}{(z_1 - z_2)^2} + \frac{c_{-1}}{(z_1 - z_2)} + c_0 + \cdots$$

Le coefficient c_{-1} est nul par antisymétrie par rapport à l'échange de z_1 et z_2 . Le coefficient c_{-2} est obtenu en prenant le déterminant de la matrice M_{12} obtenue en effaçant les deux premières lignes et colonnes de M. Ainsi, le membre de gauche et de droite ont les mêmes pôles et décroissent à l'infini; ils diffèrent d'une constante qui est nulle par homogénéité.