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1 Introduction

Percolation theory is concerned with the connectivity properties of random
graphs. Historically, its main goal was to give a mathematical model for the
study of flows of liquid in random media. Since it is difficult to give a accu-
rate generic definition of the subject we focus immediatly on the particular,
but fundamental, example of model which will be discussed in this report.

1.1 Independent site percolation

Suppose that G is a graph on which the following random experiment is
made: given a number p ∈ [0, 1], each vertex of the graph is randomly
choosen to be either open or closed with probability p and 1−p respectively,
independently of the other vertices. This process is called independent site
percolation (by opposition to bond percolation (see [4] for an introduction to
the subject, for instance), where the same process is considered on the edges
of the graph).

The subject of study of percolation theory is the existence, shape and
size of open paths (paths formed by open vertices) and clusters (connected
components consisting of open vertices) appearing in such a random graph.
This theory is interested in questions such as:

• Does an infinite open cluster exist?

• What is the average size of an open cluster?

• What is the probability that given parts of the graph are joined by
open paths?

Although elementary in their formulation these problems turn out to be
really difficult to investigate and their answers, when they are known, often
involve far less elementary notions. A good example of this fact is the
Cardy’s conjecture which relates such questions to the theory of complex
functions, and which has been proved in a particular case by Smirnov. The
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aim of this report is to present the methods used to establish this surprising
link.

1.2 The triangular lattice

Smirnov’s theorem shows conformal invariance of the limits of probabilities
of certain events on the independent site percolation equilateral on triangular
lattice with parameter p = 1

2 .
Let us define this notions briefly.
We denote by Gδ the equilateral triangular lattice embedded in the com-

plex plane C with mesh (or scale factor) δ > 0, spanned by the third roots
of unity C3 = {1, j = e2πi/3, j2 = e4πi/3} (see Figure 1).

Figure 1: The equilateral triangular lattice

Now we consider the percolation process with parameter 1
2 on Gδ. It is

easy to see that this is equivalent to a random colouring of the faces of the
regular hexagonal lattice: each vertex of Gδ can be seen naturally as the
center of a hexagonal face (the hexagonal lattice is called the dual of Gδ),
and so we can colour a face in white (respectively black) if the corresponding
vertex is open (respectively closed). Because of the symmetry of the problem
(the parameter p equals 1

2) we will prefer this formulation in what follows.
Let R be a conformal rectangle, that is, a domain bounded by a Jordan

curve, with (in counterclockwise order) four points, called vertices, a, b, c, d
on its boundary. We discretise R by taking the largest connected component
of its intersection with the lattice Gδ such that each vertex is the center of
a face contained in R (we do not take the vertices on the boundary with
the some part of the associated hexagon lying outside R, see Figure 3)
associating to each of the four points the nearest vertex in the discretization,
which we denote by aδ, bδ, cδ, dδ. It is easy to see that the shape of the
discretization approximates the rectangle well for a small mesh δ.

In the discretised rectangle we consider the probability of the event that
there is a white path separating aδ and bδ from cδ and dδ, in the sense that
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Figure 2: Percolation seen as coloring of hexagons

Figure 3: Discretization of a conformal rectangle

any path joining aδ or bδ to cδ or dδ inside the discretised rectangle must
cross the white path. We call a such event a crossing event. The probability
of this event depends on the shape of the rectangle, on the four points and
on the mesh δ and we denote it by Cδ (R, a, b, c, d).

Notice a fundamental property of the equilateral triangular lattice, called
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self-duality : if there is no white path separating aδ and bδ from cδ and
dδ, then there exists a black path separating aδ and dδ from bδ and cδ.
Both events cannot occur simultaneously, so they form a partition of the
probability space.

Figure 4: A white path separating a and b from c and d

Smirnov’s theorem (see [9]) characterizes the way that this probability
depends on the rectangle R. Recall that a conformal mapping is a bijec-
tive holomorphic function (its inverse is in fact automatically holomorphic)
between two domains of C.

We say that two conformal rectangles R and R′ are conformally equiv-
alent if there is a conformal mapping from the domain of R to the domain
of R′, that extends continuously to the boundary of R and maps the four
points a, b, c, d of the R to the four points a′, b′, c′, d′ of R′, in that order.
This is an equivalence relation.

Theorem 1 (Smirnov). The probability Cδ (R, a, b, c, d) admits a limit as
the mesh δ tends to 0, which is conformally invariant: for every rectangle
(R′, a′, b′, c′, d′) which is conformally equivalent to (R, a, b, c, d), the limit is
the same,

lim
δ→0

Cδ (R, a, b, c, d) = lim
δ→0

Cδ

(
R′, a′, b′, c′, d′

)
.

To prove this theorem, we establish a reformulation in terms of confor-
mal triangles, which are also domains bounded by Jordan curves, with three
vertices (three points on the boundary). Let us denote by T a conformal
triangle and by a1, aj , aj2 the corresponding vertices (notice that for sym-
metry reasons the indices are choosen as the third roots of unity); the three
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vertices of T partition its boundary into three sides denoted by A1, Aj and
Aj2 which are the ones that do not contain (or, equivalently, are opposite
to) a1, aj and aj2 respectively. Again, we discretize T into a subgraph Tδ

and associate to the points a1, aj , aj2 the nearest vertices of Tδ Tδ which are
denoted by aδ

1, a
δ
j , a

δ
j2 .

As before, we are interested in crossing events. For every point z inside
T , let Qδ

1 (z) be the event that there exists a white path separating aδ
1 and

z from aδ
j and aδ

j2 , and define the events Qδ
j (z) and Qδ

j2 (z) similarly, by
rotating the indices (the index of the event corresponds to the point that
is on the same side of the path as z). Let Hδ

1 (z), Hδ
j (z), Hδ

j2 (z) be the
respective probabilities of the events Qδ

1 (z) , Qδ
j (z) , Qδ

j2 (z).

Figure 5: A white path separating aδ and z from cδ and dδ

Remark 1. The probability Cδ (R, a, b, c, d) on the rectangle with four point
a, b, c, d can be seen as the value of Qδ

1, taking the same domain, letting a1 =
a, aj = c, aj2 = d and and evaluating at z = b (after having continuously
extended the function Qδ

1 to the boundary of T ).

Conformal equivalence for triangles is defined the same way as for rec-
tangles, the difference being that existence and uniqueness of conformal
mapping between triangles is ensured by the following theorem (see [8], on
conformal mapping, for instance).

Theorem 2. Let T and T ′ be two conformal triangles. Then there exists a
unique conformal mapping ΦT ′

T that maps the domain and the vertices of T
to the ones of T ′.

We are now able to give a reformulation of Smirnov’s theorem’s conformal
invariance in terms of triangles.
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Theorem 3. The functions Hδ
1 ,H

δ
j ,H

δ
j2 converge uniformly as δ tends to

0. The limits, call them h1, hj , hj2 respectively, are conformally invari-
ant: let T ′ be another conformal triangle, with the corresponding functions
h′1, h

′
j , h

′
j2. Then, if we denote by ΦT ′

T : T → T ′ the conformal mapping
between T and T ′, we have that

h1 = h′1 ◦ ΦT ′
T , hj = h′j ◦ ΦT ′

T , hj2 = h′j2 ◦ ΦT ′
T .

Figure 6: The limits of the probabilities are conformally invariant

It is easy to see that the original theorem is a particular case of this the-
orem, by the remark above and noticing that conformal mappings between
rectangles are in particular between triangles.

In fact, this is not the latter formulation we will prove in this report,
but a more geometrical and beautiful one, which moreover gives a simple
estimation of the probability when the domain is an equilateral triangle.
Recall that j is the third root of unity equal to e2πi/3 and that we denote
by C3 = {1, j, j2} the group generated by j.

Theorem 4. With the same notations as above, the limits of h1, hj , hj2 exist
and if we define the function f and g as

f =
∑
µ∈C3

hµ, g =
∑
µ∈C3

(
1
3

+
2
3
µ

)
hµ,

then f is identically equal to 1 and g is the unique conformal mapping from
the conformal triangle T to the equilateral triangle ∆ whose vertices are
1, i√

3
,− i√

3
(in that order).

Uniqueness of the conformal mapping gives us conformal invariance of g
(in the same sense as in the previous formulation) immediatly: if ΦT ′

T is a
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conformal mapping between T and T ′, with g defined as above for T and
g′ similarly for T ′, then as g′ ◦ΦT ′

T is a conformal mapping from T to ∆, it
unique and therefore equal to g.

Taking the real part of g yields h1 (the factors of hj and hj2 are purely
imaginary), so h1 is conformally invariant, and we obtain in a similar way
the same result for hj and hj2 , implying Theorem 2.

Let us finally mention a direct consequence of this theorem, which is the
simple form that arise naturally on the equilateral triangle ∆.

Corollary 1 (Carleson’s reformulation). If we choose our conformal triangle
T to be actually the equilateral triangle ∆ defined above, we obtain that the
limit h1 is given by the following expression:

h1 (z) = Re(z).

By symmetry, similar equations hold for hj (z) and hj2 (z).

This follows from the fact that g is equal, by uniqueness, in this case
to the identity function. As discussed a few lines above h1(z) is equal to
Re (g(z)) = Re(z).

It is really surprising to see a linear combination of three probabilities
defined on discrete events tending to a conformal mapping. This shows
that the analytic functions theory lies behind the apparently disordered
phenomenon of percolation on the triangular lattice and gives us a deeper
understanding of this process.

From the point of view of complex analysis this theorem shows in a very
constructive way the existence of a conformal mapping from any domain
bounded by a Jordan curve to the equilateral triangle ∆, which is given
for instance by Riemann’s mapping theorem under more general hypothesis
(simple connectivity), but in general in a far less constructive way.

1.3 Proof of Theorem 4

The proof of Theorem 4 involves essentially three technical results which
will be discussed in detail in this report. Let us suppose that we are on the
conformal triangle T with the same notations as in Theorem 4.

Proposition 1. The functions families
(
Hδ

1

)
δ>0

,
(
Hδ

j

)
δ>0

,
(
Hδ

j2

)
δ>0

are pre-
compact on the closure of T with respect to the uniform norm, that is, each
sequence admits a uniformly converging subsequence.

Proposition 2. If h̃1, h̃j , h̃j2 are accumulation points given by the previous
lemma, then the linear combination

g̃ =
∑
µ∈C3

(
1
3

+
2
3
µ

)
h̃µ,
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once extended to the closure of T , is a homeomorphism from the boundary
of T to the boundary of ∆ and maps the vertices of T a1, aj , aj2 to the
corresponding vertices 1, i√

3
,− i√

3
of ∆.

Proposition 3. With the same notations as in previous proposition, h̃1 +
h̃j + h̃j2 and g̃ are holomorphic on the interior of T .

Let us recall the following theorem (see [2] for instance):

Theorem 5 (Darboux-Picard). Let Ω and Ω′ be two complex domains
bounded by Jordan curves. If Φ : Ω → Ω′ is a holomorphic function that
extends continuously to the closure of Ω and maps the boundary of Ω home-
omorphically on the boundary of Ω′, then Φ is a conformal mapping between
Ω and Ω′.

With the notation introduced in the propositions we have that the sum
h̃1 + h̃j + h̃j2 is constant (since it is a real-valued holomorphic function), and
by Theorem 5, g̃ is a conformal mapping from T to ∆.

This conformal mapping is unique, so it is in fact equal to the function g
defined in Theorem 4. Therefore for each µ ∈ C3, h̃µ is unique, so we denote
it by hµ, as in the Theorem 3. By uniqueness of the accumulation point as
δ tends to 0, we have that the function Hδ

µ actually converges to hµ for each
µ ∈ C3.

So it suffices to show Propositions 1, 2, 3. This will be done in the next
paragraphs.

2 Standard properties

We now give some standard results that will be used for the proof of the
propositions of previous section that are specific to triangular lattices.

2.1 Self-duality

Self-duality is a property that appears on the triangular lattice in various
equivalent forms, that states essentially that if there is no white path in some
direction, then there is a black path in the ”orthogonal” direction. Although
easy to figure out, this graph-theoretic result is difficult to prove (see [5], for
instance). We give two equivalent forms of this property that we will need
in this report, the first having already be mentioned in the previous section.

Proposition 4 (Self-duality, rectangular form). Let R be a discretised con-
formal rectangle with vertices a, b, c, d in counterclockwise order. Then if
there is no white path separating aδ and bδ from cδ and dδ, then there is a
black path separating aδ and dδ from bδ and cδ. Both events cannot occur
simultaneously, so they form a partition of the probability space.
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Proposition 5 (Self-duality, radial form). Let Ω be a discretised domain
and z be a vertex in Ω. Then if there is no white annulus (closed simple
path) surrounding z, then there is a black path joining z to the boundary
of Ω. Conversely, if there is no such black path, then there exists a white
annulus surrounding z.

2.2 Russo-Seymour-Welsh theorem

A very important tool for the estimation of crossing probabilities is the
Russo-Seymour-Welsh theorem which we will use in two forms. As usual we
consider independent percolation on the equilateral triangular lattice with
parameter p = 1

2 .

Theorem 6 (Russo-Seymour-Welsh, rectangular form). Let R be a confor-
mal rectangle with vertices a, b, c, d in counterclockwise order. There exists
constants α > 0 and β < 1 such that the probability Cδ (R, a, b, c, d) of a
white (or black) crossing separating aδ and bδ from cδ and dδ is bounded
uniformly with respect to the mesh δ:

α ≤ Cδ (R, a, b, c, d) ≤ β ∀δ > 0

Theorem 7 (Russo-Seymour-Welsh, radial form). Consider percolation in
a disc D with center z of radius α > 0, with z and α fixed. There exists
positive constants C and ε such that for any circle Γ centered in z of radius
r < α the probability that there is a white (or black) path joining Γ to the
boundary of D is smaller that Crε, for all mesh δ > 0.

3 Compactness

In order to show the precompactness of the functions families
(
Hδ

µ

)
δ>0

as-
serted in Proposition 1, we shall suppose in this section that µ = 1 (the
other cases µ = j, j2 are symmetric) and write Hδ for Hδ

1 .
We show that each sequence (Hδn)n≥0 with δn tending to 0 admits an

accumulation point. For this purpose we will use the following lemma:

Lemma 1. There exist positive constants C and ε such that, for z1, z2 ver-
tices of the triangular discretisation of T (equivalently, centers of the hexag-
onal faces), we have, for all mesh δ > 0,

|Hδ(z1)−Hδ(z2)| ≤ C · `(z1, z2)ε,

where `(z1, z2), the connectivity function, is the length of the shortest path
joining z1 and z2 in the of the triangle T .

We obtain the desired accumulation point by interpolation: for δ > 0, we
denote by H̃δ an interpolation of Hδ defined on the closure of the triangle T .
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From the lemma, we obtain that (a suitably choosen) family of interpolations(
H̃δ

)
δ>0

is Hölder with respect to the distance `, which is equivalent to the

euclidean metric (`(z1, z2) → 0 uniformly as |z1−z2| → 0) since T is bounded
by a Jordan curve. This implies that the family H̃δ is equicontinuous:

∀ε > 0 ∃δ > 0 : |x− y| ≤ δ =⇒ |fi(x)− fi(y)| ≤ ε ∀i ∈ I.

We may now apply the following classical compactness theorem (see [8])

Theorem 8 (Ascoli-Arzela). A bounded equicontinuous family of functions
defined on a compact set is precompact with respect to the uniform norm.

So we obtain for each sequence δn tending to 0 an accumulation point h̃ of
the sequence H̃δn . But h̃ is also an accumulation point of the sequence Hδn ,
since the difference between the original functions Hδ and their interpolation
H̃δ tends to 0 as the mesh goes to 0, and we obtain the desired result.

To complete the proof, it remains to show Lemma 1, which is done mainly
by using Russo-Seymour-Welsh estimates.

3.0.1 Proof of Lemma 1

As in the formulation of Lemma 1, let z1, z2 be the two vertices inside the
triangulation. By elementary partitioning we obtain (recall that Hδ(z) is
the probability of the event Qδ

1 that there exists a white path separating a1

and z from aj and aj2)∣∣∣Hδ
1 (z1)−Hδ

1 (z2)
∣∣∣ =

∣∣∣P(
Qδ

1 (z1) \Qδ
1 (z2)

)
−P

(
Qδ

1 (z2) \Qδ
1 (z1)

)∣∣∣ .
So by symmetry of the latter expression it is sufficient to show that there
are positive constants C ′ and ε such that

P
(
Qδ

1 (z1) \Qδ
1 (z2)

)
≤ C ′` (z1, z2)

ε .

To use Russo-Seymour-Welsh theorem (Theorem 7) we want to see that
the event Qδ

1 (z1) \Qδ
1 (z2) implies a connection between two circles, one of

macroscopic size (that is, depending on the shape of the domain of T only)
and one of microscopic size (of order `(z1, z2)). The size informations are
given by the following geometrical considerations.

• We first remark that there exists a positive constant α > 0 (depending
on the T only) such that each point of T is at (euclidean) distance of
at least α to one of its three sides A1, Aj and Aj2 .

• If z1 and z2 are close enough (which we may suppose to show the
Hölder condition since Hδ is bounded), we can suppose that they are
both contained inside a (microscopic) circle of radius `(z1, z2) which is
at (macroscopic) distance at least α

2 to one of the sides T .
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It remains to show that the event Qδ
1 (z1) \Qδ

1 (z2) implies the occurence
of a connection by a monochromatic path from the microscopic circle of
radius `(z1, z2) to the farthest side of the triangle (a fortiori to a circle of
radius α

2 ), which is by Russo-Seymour-Welsh theorem an event of probability
less that C ′` (z1, z2)

ε for some positive constants C ′ and ε and this yields
the desired result.

In fact, if Qδ
1 (z1) \ Qδ

1 (z2) happens, then the microscopic circle is con-
nected by a monochromatic path to each of the three sides of the triangle
(see Figure 6).

• It is connected by a white path to Aj and Aj2 , since there is a white
path that separates z1 and z2: z1 is separated from aj and aj2 while
z2 is not, so the separation must run between them.

• There is a black path that connects the circle to A1, since otherwise,
by self-duality, there would be a white path separating it from A1,
which would imply the occurence of Qδ

1 (z2).

Figure 7: Occurence of Qδ
1 (z1) \Qδ

1 (z2) and monochromatic connections to
the three sides of T
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4 Boundary behaviour

Let h̃1, h̃j , h̃j2 be accumulation points of the functions Hδ
1 ,H

δ
j ,H

δ
j2 as δ → 0.

The goal of this section is to prove Proposition 2: the linear combination
g̃ =

∑
µ∈C3

(
1
3 + 2

3µ
)
h̃µ maps the boundary of our conformal triangle T

homeomorphically on the boundary of the equilateral triangle ∆ and sends
the points a1, aj , aj2 on the corresponding vertices 1, i√

3
, − i√

3
of ∆, respec-

tively. This assertion is the first step to show that g̃ is in fact a conformal
mapping between T and ∆.

We will prove the following claims, which imply Proposition 2 (bijectiv-
ity comes from the boundary conditions, and since the boundary of T is
compact, g̃ is a homeomorphism on it):

1. The vertices of T are mapped on the vertices of ∆: g̃(a1) = 1, g̃(aj) =
i√
3
, g̃(aj2) = − i√

3
.

2. The sides of T are mapped on the sides of ∆: g̃(A1) ⊂
[

i√
3
,− i√

3

]
,

g̃(Aj) ⊂
[
1,− i√

3

]
, g̃(Aj2) ⊂

[
1, i√

3

]
.

3. g̃ is injective on the boundary of T .

Of course, by symmetry, it is sufficient to show the first claim for a1 and
the second one for A1.

Proof of Claim 1. We show that limδ→0H
δ
1(aδ

1) = 1 and limδ→0H
δ
j (aδ

1) =
limδ→0H

δ
j2(aδ

1) = 0 where aδ
1 is the discretisation of the vertex a1 at mesh

δ.
These facts come from self-duality arguments: if Qδ

1(a
δ
1) (recall that

Hδ
1 = P

(
Qδ

1

)
) does not occur, then there exists a black path that joins

aδ
1 to the opposite arc A1, implying the connection of a microscopic circle

(of order δ) to a macroscopic one (depending on T only).
By Russo-Seymour-Welsh theorem, the probability of non-occurence of

Qδ
1(zδ) tends to 0 as δ → 0, and therefore limδ→0H

δ
1(zδ) = 1. The results

for Hδ
j and Hδ

j2 are proved exactly the same way (the corresponding events
imply occurence of a monochromatic connection of small probability).

Proof of Claim 2. First we prove that limδ→0H
δ
1(zδ) = 0 for the discreti-

sation zδ of a point on the arc A1. Again, this follows from Russo-Seymour-
Welsh theorem: the corresponding event implies that a small circle around
zδ is connected by a white path to the arcs Aj and Aj2 , at least one of them
being at macroscopic distance of zδ, and we conclude as in the previous
assertion.

So it remains to see that h̃j + h̃j2 = 1 on A1, so that g̃ become a convex
combination of 1

3 + 2
3j and 1

3 −
2
3j. This comes from the fact that the events

Qδ
j and Qδ

j2 partition the probability space, by self-duality.
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Proof of Claim 3. If we show that the function h̃1 is strictly monotonic
on the arc Aj , then by symmetry it is also on the other arc Aj2 , and the
functions h̃j and h̃j2 satisfy the same property for the corresponding arcs.
Since on each arc one of the three functions vanishes and the two others
are one-to-one, we obtain by linear independance that g̃ is injective on each
arc, and by Claim 2, g̃ is therefore one-to-one. To see why h̃1 is strictly
increasing on Aj , take two points z1 and z2 on Aj such that we have in that
order a1, z1, z2, aj . We want to show that h̃1(z1) > h̃1(z2). This comes from
the fact that the probability that there is white path that separates z1 and
a1 from aj and aj2 and that this is not the case for z2, is bounded away
from zero by Russo-Seymour-Welsh theorem. By constructing appropriate
disjoint ”tunnels” (conformal rectangles), one can ensure that with positive
probability there exists a white path separating z1 and a1 from z2, aj and aj2

and simultaneously a black path between the white path and z2 that joins
Aj to A1 (the existence of this black path ensures that the event Qδ

1(z2) does
not occur).

5 Analyticity

The last step in order to complete the proof of Smirnov’s Theorem (The-
orem 5) is to show the analyticity of the functions h̃1 + h̃j + h̃j2 and g̃ =∑

µ∈C3
(

1
3 + 2

3µ
)
h̃µ defined in the first section. In the following paragraphs

we show that the function h defined by h = h̃1 + jh̃j + j2h̃j2 is analytic ;
the proof for h̃1 + h̃j + h̃j2 is similar and we omit it here. Eventually, as g
is a linear combination of these two functions, we obtain the claimed result.

Let us denote by δn a sequence tending to 0 such that the sequences Hδn
µ

converge to h̃µ for µ ∈ C3. For shorter notation, we write Hδ for the sum
Hδ

1 + jHδ
j + j2Hδ

j2 (this is not the function defined in Section 2). So we have
that Hδn tends to h as n goes to infinity.

In order to show that h is holomorphic it suffices, by the following theo-
rem, to show that the integral of h along any simple smooth curve contained
in the conformal triangle T is equal to zero.

Theorem 9 (Morera’s condition). Let Ω be a simply connected domain of
the complex plane and let f : Ω → C be a continuous function. Then f is
holomorphic if and only if for every simple closed smooth curve γ contained
in Ω the integral of f along γ is 0.

So let γ be simple smooth curve contained in T . For a mesh δ > 0, let us
denote by Tδ the discretisation of T in regular hexagons of size δ and by γδ

the discretisation of γ constructed as a closed path (in the graph-theoretical
sense) in Tδ such that γδ tends to γ as δ tends to 0 (with respect to the
Hausdorff distance).
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Now we construct an approximation of the integral
∮
γ h(z) dz in the

following way. For an oriented edge ~e = (x, y) in the graph Tδ (x and
y being its initial and terminal vertices respectively), define the following
quantities:

Hδ(~e) =
Hδ(x) +Hδ(y)

2
, ∂~eHδ = Hδ(y)−Hδ(x).

Let ~γδ denotes the set of the edges of γδ oriented in the counterclockwise
orientation. We define the discrete integral of Hδ along γδ as

Iδ(γ) =
∑
~e∈ ~γδ

~eHδ (~e) ,

where ~e before Hδ is seen as the complex number y − x. This sum approxi-
mates a Riemann integral of Hδ, so that we have

Iδn(γ) →
∮

γ
h(z) dz as n→∞.

Let us denote by Int (γδ) the set of the hexagonal faces contained in the
domain bounded by γδ and for such a face f by ~∂f its six vertices oriented
in counterclockwise orientation. So we obtain

Iδ(γ) =
∑

f∈Int(γδ)

∑
~e∈ ~∂f

~eHδ (~e) .

since the terms appearing in edges that are not on the boundary γδ appear
twice with opposite signs and therefore cancel (see Figure 8).

Figure 8: The contributions of the edges that are not on the boundary cancel

An elementary reordering of the terms give that for each hexagonal face
f ∈ ~∂f with edges (x0, x1), (x1, x2), . . . , (x5, x0) and with center c(f)

∑
~e∈ ~∂f

~eHδ(~e) =
5∑

k=0

(
xk + xk+1

2
− c(f)

)
(H(xk+1)−H(xk)) ,

the index k being taken modulo 6.
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For vertices not in the boundary γδ, the term xk+xk+1

2 (H(xk+1)−H(xk))
appears twice with opposite signs and cancels also, so only the terms with
the factor c(f) remain. A term of the form H(xk+1) − H(xk) becomes a
factor of the difference between two faces so it is a dual edge of (xk, xk+1)
obtained by rotating the said edge by an angle of π

2 . We denote by ~e∗ the
dual edge of an oriented edge ~e.

On the other hand, the terms in the boundary count for little: we have
that the number of edges appearing in γδ is of order 1

δ while the term
xk+xk+1

2 − c(f) is of order δ and the difference is of order δε since we proved
in the previous section that the functions are Hölder. So the contribution of
the boundary is of order δε.

Putting together these two remarks we eventually obtain

Iδ(γ) =
1
2

∑
~e∗∂~eHδ + o (δε) ,

where the sum is taken over all the positively oriented edges of the hexagonal
faces lying in the strict interior of γδ.

We have that ∂~eHδ = ∂~eH
δ
1+j∂~eH

δ
j +j2∂~eH

δ
j2 , the terms in the right hand

side being defined the same way as ∂~eHδ. For an edge ~e = (x, y) we define
P δ

1 (~e) as the probability of the event Qδ
1(y)−Qδ

1(z) (and we define similarly
P δ

j , P
δ
j2). As we have ∂~eH

δ
1 = P δ

1 (~e) − P δ
1 (−~e) by elementary partitioning,

we obtain

Iδ(γ) =
∑

~e∗
(
P δ

1 (~e) + jP δ
j (~e) + j2P δ

j2(~e)
)

+ o (δε)

Using the following lemma will enable us to complete the proof. For an
edge in the hexagonal lattice ~e = (x, y), we denote by j~e (respectively by
j2~e) the edge obtained by rotating ~e by an angle of 2π

3 (respectively 4π
3 )

around its intial vertex x.

Lemma 2 (Smirnov). For every edge ~e in the subgraph delimited by γδ we
have the following identity

P δ
1 (~e) = P δ

j (j~e) = P δ
j2(j2~e).

Using Lemma 2, we can rearrange the sum Iδ(γ):

Iδ(γ) =
∑

~e∗
(
P δ

1 (~e) + jP δ
1 (j2~e) + j2P δ

1 (j~e)
)

+ o (δε)

=
∑ (

~e∗ + j(j~e)∗ + j2(j2~e)∗
)
P δ

1 (~e) + o (δε) .

As ~e∗ + j(j~e)∗ + j2(j2~e)∗ = 0, we have that the integral vanishes as δ
tends to 0, concluding the proof of Proposition 3; so the only part remaining
to be shown is Lemma 2.
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5.1 Proof of Lemma 2

We only show that P δ
1 (~e) = P δ

j (j~e), the other part of the identity being
symmetric. So let us write ~e = (x, y) and denote by x∗ the triangular face
in the triangular discretization Tδ which has x as its center.

The occurence of the event Q defined by Q = Qδ
1(y)−Qδ

1(x) (recall that
P δ

1 (~e) is the probability of Q) implies the existence of three monochromatic
connections with the sides of the conformal triangle T , as seen in Lemma 1
(Section 2). More precisely, there is a white path separating Aj and Aj2 that
passes between x and y, such that the triangular face x∗ has two vertices
on it : denote by vj the vertex that is the closer to Aj (in the sense of the
white path) and by vj2 the one that is closer to Aj2 . Denote by v1 the third
vertex of x∗; by self-duality v1 is connnected to A1 by a black path (since
otherwise Qδ

1(x) would occur).
So, if we denote by Qbww the event that there exists a black connection

(first letter of the index) between v1 and A1, a white connection between vj

and Aj (second letter of the index) and a white connection between vj2 and
Aj2 (third letter of the index), we have that the occurence of Q implies the
one of Qbww. Conversely, Qbww implies Q, so Q = Qbww. Similarly, we have
that P δ

j (j~e) is the probability of Qwbw.
As we consider an independent percolation process with parameter p =

1
2 , to show that P δ

1 (~e) = P δ
j (j~e), it suffices to see that the cardinality of Qbww

(the number of configurations (colourings) such that Qbww occurs) is equal
to the cardinality of Qbwb, or equivalently to construct a bijection between
the configurations of these two events. By flipping the colours we have a
bijection between Qbwb and Qwbw, so it suffices to construct a bijective map
Ψ : Qbww → Qbwb.

So, let ω be a configuration of Qbww, and let B1 be the counterclockise-
most extremal black path joining v1 to A1 and Wj the clockwise-most ex-
tremal white path joining vj to Aj (it is not difficult to see that it is well-
defined). The concatenation of B1 and Wj is path that joins A1 and Aj .

We define Ψ(ω) by flipping the colours of the hexagonal faces in the
subgraph of Tδ strictly delimited by the concatenation of B1 and Wj which
is on the side of a1 and aj . So B1 and Wj are left unchanged, while we
have now that vj2 is joined to Aj2 by a black path. So Φ(ω) is now a
configuration of Qbwb and we have constructed the mapping Φ as claimed.
By flipping again the colours, we can construct similarly the inverse of Ψ so
it is bijective and this concludes the proof: we have

P δ
1 (~e) = P(Qbwb) = P(Qbwb) = P(Qwbw) = P δ

j (j~e).
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Figure 9: Flipping the colours

6 Cardy’s formula and SLE6

As we have seen in the first section, Smirnov’s theorem not only states the
conformal invariance of the limit of crossing probabilities, but also gives,
through Carleson’s reformulation (Corollary 1), an explicit formula for cal-
culating these probabilities: from this reformulation, we obtain immediatly
that on the equilateral triangle with vertices a = 1, b = i√

3
, c = − i√

3
, we

have, for every point d on the segment [a, c], that the probability that a
white path separates a and d from b and c (in fact we should talk about
the respective discretization of a, b, c, d, but we will make this slight abuse
of notation from now) tends to Re(d) as the mesh δ tends to 0.

Historically, Cardy, who conjectured conformal invariance for several sta-
tistical physics models (not only percolation, but also for instance Ising
model) at critical probability, gave an explicit formula for the unit disc
D = D(0, 1), which can be proved in the particular case of the equilateral
triangular lattice using Smirnov’s theorem.

Let a, b, c, d be four points on the boundary of D, counterclockwise. We
denote by u the cross-ratio of a, b, c, d defined by u = (d−c)(b−a)

(c−a)(d−b) , which is a
real number between 0 and 1.

Proposition 6 (Cardy’s formula). The probability Cδ (D, a, b, c, d) that a
white path separates a and d from b and c tends to a function f of the
cross-ratio u, where f satisfies the hypergeometric differential equation

u(1− u)f ′′(z) +
2
3
(1− 2u)f ′(u) = 0,

with the obvious boundary conditions f(0) = 0 and f(1) = 1. The solution
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of this equation is given by the hypergeometric function

Γ
(

2
3

)
Γ

(
1
3

)2

∫ u

0
(1− x)−

2
3x−

2
3 dx.

Notice that the fact that the limit is a function of u only makes sense,
since it is conformally invariant and conformal mappings of D on itself are
homographies and preserve the cross-ratio (see [8], for instance).

We could derive the solution of the equation by mapping the equilateral
triangle conformally (such a mapping is a hypergeometric function) on the
unit disc and translate Carleson’s formulation in terms of the cross-ratio,
but this does not tell from where the differential equation comes, and we
will try to show a way to obtain it in the following paragraphs.

By conformal invariance, is sufficient to derive the formula for specific
points on the boundary of D, so let us fix b = −1, c = −i, d = 1 and let a
move freely on arc(d, b) (the arc joining d to b counterclockwise), so that u
runs through the whole open interval ]0, 1[. Consider the usual discretization
of D and the points at mesh δ > 0 and the associated percolation process.

For any configuration (colouring) ω, we define an exploration process on
the vertices of the hexagonal faces (so we consider the dual of the initial
graph Gδ) in D in the following manner.

1. We first add to the discretization of D the hexagons of Gδ which lie on
the external boundary on arc(a, c) (we only took the hexagons inside
D for the percolation process, so we add one layer of hexagons to the
discretization of D) and we colour in black all the ones on arc(b, c),
and in white all the ones on arc(a, b).

2. We start from the vertex x0 that is the nearest from b and consider the
edge v1 = (x0, x1) that does not belong to the discretized boundary of
D (we suppose δ sufficiently small so that it is possible).

3. The the process runs step by step through the graph: at step n, we
define en+1 and xn+1 as follows. Consider the two edges starting from
vn and distinct from en. Call bn the one which is ”on the left” and
wn the one which is ”on the right” (we have in counterclockwise order:
wn, bn, en). Denote by ξn the hexagonal face to which bn and wn are
adjacent. Then:

• If ξn is black, take en+1 = (vn, vn+1) = bn.

• If ξn is white, take en+1 = (vn, vn+1) = wn.

4. Stop when the process reaches arc(c, d) or arc(d, a).

The exploration process has on its left a layer of white hexagons and on its
right a layer of black hexagons. So if it reaches arc(d, a), then obviously there
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can be no white path separating a and d from b and c. On the contrary, if it
reaches arc(c, d), by self-duality there is a white path separating a and d from
b and c (otherwise it would have reached arc(d, a)). The initial colouring of
arc(b, c) and arc(a, b) ensures termination of the process.

Figure 10: The exploration process (solid) avoids the white path (dashed)

It has been proved using an idea of Smirnov (see [3]) that the exploration
process converges to a continuous limit as the mesh tends to 0, called chordal
SLE (for Schramm-Loewner Evolution) with parameter κ = 6, or (chordal)
SLE6. We briefly define the family of the SLEκ processes in the complex
upper half-plane H = {z ∈ C : Im(z) > 0}. For more details see [6], p.147.

The SLEκ process with parameter κ ≥ 0 on the plane D is the random
collection of conformal maps gt obtained by solving the initial value problem

ġt(z) =
2

gt(z)−
√
κBt

, g0(z) = z (z ∈ H),

where Bt is a standard one-dimensional Brownian motion starting at the
origin. Each gt is a conformal mapping from a domain Ht ⊂ H to H.

When we say that γ is a SLE curve, we mean by that that the domain
Ht of gt is the set of points in H that are connected to the point at infinity
(denoted by ∞) by a path that does not cross γ. We say that γ generates
the SLE. We have that SLE is generated by a path with probability one
(see [6], Theorem 6.3, p. 148).

For a point z in the closure of H, we define the hitting time Tz as the
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first time that z leaves the closure of the domain of gt. In other words, it is
the time when z is ”swallowed” by the SLE.

We map conformally H̄ ∪ {∞} on the unit disc D̄ by the application
φ : H̄ ∪ {∞} → D̄ defined by

φ(z) =
z − i

z + i
.

We have φ(0) = b, φ(1) = c, φ(∞) = d. As one can easily check, φ is an
homeomorphism between the negative real line {−y : y > 0} and arc(d, b),
so for any a on arc(d, b), we find y > 0 such that φ(−y) = a. We define
SLE on the disc D starting at b as the image by the conformal mapping φ
of SLE on H.

As the limit of the exploration process defined above is a SLE6 curve
starting from b we have that the event that the process hits arc(c, d) (instead
of arc(d, a)) corresponds in the limit to the event Tc < Ta on D (the hitting
time being defined similarly on D as on H) which can be translated into the
event T−y < T1 for SLE6 on H.

So we summarize the remarks above in the following proposition.

Proposition 7. The limit of the probability Cδ (D, a, b, c, d) (as δ → 0) is
equal to the probability that a SLE6 path on D hits arc(c, d) before arc(d, a),
or equivalently that T−y < T1 on H.

The probability of the event T−y < T1 is described by the following
proposition (see [6], Proposition 6.33, p.165), which follows from Itô’s for-
mula.

Proposition 8. If y > 0 and γ is an SLEκ curve with κ > 4 then

P(T−y > T1) = ψ

(
y

y + 1

)
,

where ψ satisfies the hypergeometric equation:

u(1− u)ψ′′(u) + (2a− 4au)ψ′(u) = 0,

with a = 2
κ .

Notice that the proposition gives an equation for the probability

P(T−y > T1) = 1−P(T−y < T1),

but by linearity, we have of course that P(T−y < T1) satisfies the same
equation.

Eventually, taking κ = 6 in the proposition yields the differential equa-
tion of Proposition 6, since we have

lim
δ→0

Cδ (D, a, b, c, d) = P(Tc < Ta) = P(T−y < T1),
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Figure 11: Taking back SLE in the half-plane

and using the fact that the cross-ratio of the points a, b, c, d is in fact equal
to y

y+1 .

Many thanks to Reda Messikh and Jiř́ı Černý for introducing me to this
fascinating suject and for their help, advices and the numerous hours they
spent for me!
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