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Percolation theory is concerned with 
the connectivity properties of large 
random graphs.

It is widely used as a model for 
disordered media, communication or 
electrical networks or forest �res. Its 
name stems from the co�ee making 
process, where water �ows through 
the random medium of co�ee 
powder.

From the mathematical point of view 
it has proved to be a very rich and 
interesting theory.

Spectacular progress has been made 
recently towards the understanding 
of this phenomenon in two dimen-
sions thanks to the use of complex 
analysis.

Introduction

Critical Percolation and 
Conformal Invariance

The Model
There are many models arising in percolation 
theory. We present here the one which is the best 
understood so far in two dimensions: critical 
percolation on the honeycomb lattice.

Consider the regular honeycomb lattice (the tiling 
of the plane by regular hexagons) and perform 
critical percolation on it: color each face either in 
blue or in red by tossing a fair coin (see the �gure 
above).

We are interested in describing the geometry of the 
clusters (connected components of a certain color)  
of such a random con�guration. 

At the scaling limit (when the size of the hexagons 
tends to 0), it turns out that these clusters become 
random fractals, of Hausdor� dimension 91/48 (see 
below).
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Universality
A very exciting property about these results is 
that they are conjectured to be universal: the 
scaling limit of critical percolation on any 
planar regular lattice should be the same, 
independently of the particular shape of the 
lattice. Moreover this is believed to be true on 
random lattices (e.g. Voronoï tiling of Poisson 
processes) as well.

Other lattice models (e.g. Ising, Potts, O(n), FK, 
self-avoiding polymers) are also expected (or 
shown) to be conformally invariant at critical 
temperature, leading to SLE with di�erent 
parameter values.
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Ideas of the proof
The proofs for both the crossing 
probability and the expected number 
of clusters share the same structure. 
The �rst idea is to let one of the 
boundary points move inside the 
domain, making our quantity a 
function h of the point. Then there are 
mainly three steps in the proof:

1. One shows Hölder regularity of h, 
uniformly with respect to the scale. 
This can be done using correlation 
inequalities and uniform bounds on 
certain probabilities and allows to 
consider convergent subsequences.

2. Boundary conditions are establi-
shed, by probabilistic and combinato-
rial means.

3. We show that h is a harmonic 
function, by �nding its harmonic 
conjugate. This is done by proving a 
discrete version of Cauchy-Riemann 
equations:

We use a discrete Stokes-like formula 
to transform this discrete equations 
into a Morera condition, proving 
analyticity:

We then show that some Dirichlet or 
Neumann-Dirichlet problem is solved 
by our function. Eventually one uses 
uniqueness results for conformal 
mappings to conclude about the 
conformal invariance of our quantity 
and identify the limit.

Conformal invariance
The scaling limit of percolation exhibits a 
remarkable property of conformal invariance: 
it is invariant under conformal mappings 
(mappings that locally preserve angles). 

As by Riemann's mapping theorem the 
two-dimensional conformal mappings form 
an in�nite-dimensional family, conformal 
invariance is a very strong property.

More precisely, consider percolation restricted 
to a "rectangle" U (a complex domain with 
four marked points on the boundary) and 
consider a conformal mapping that maps U 
onto another rectangle V.

In the limit the 
probability that a red 
cluster crosses U and 
joins two given sides of 
the rectangle is the 
same as in the domain 
V (see[2])!  

The expected number 
of clusters crossing between two sides of a 
rectangle is also conformally invariant [1] as 
well as several other quantities. 

Moreover exact formulas can be computed for 
them: if the domain is a disc and c denotes the 
cross ratio of the four points, the expected 
number of clusters is given by -log(1-c). 

On the disc the probability that two sides are 
joined by a red cluster is given by a hypergeo-
metric function of the cross-ratio.
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Thanks to the conformal invariance property, many 
deep results can be derived about the scaling limit.

In particular the boundary of a cluster can be 
expressed analytically. Namely it has been shown 
that random curves satisfying a so-called conformal 
Markov property belong to a one-parameter family 
of processes called SLE(   ). 

These processes consist in a time-growing 
collection of compact sets which are the domains of 
non-de�nition in the upper half-plane of the 
solution of the complex stochastic di�erential 
equation:

 

where Bt is a standard one-dimensional Brownian 
motion and     is a parameter, which is equal to 6 in 
the percolation case. The yellow fractal on the left is 
an SLE(6) realisation.

If one looks at the boundaries of the clusters, they 
appear in the limit as an in�nite random collection 
of nested closed curves which are all described in 
terms of SLE(6), called loop soup. 

This allows to use Itô's calculus to compute quanti-
ties related to percolation (for instance the 91/48 
dimension of the clusters arises from the main 
eigenvalue of a certain di�erential operator). 

With these techniques one can also understand 
near-critical percolation (when one uses almost fair 
coins for coloring), see [3].
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