
LATTICE MODELS (MA1, EPFL)

1. Introduction

1.1. What this Class is About. The goal of this class is to give an overview of results about lattice models,
which should help you understand their structure, what are the kind of questions to ask, and what are the
kind of answers to find. This class is a math class: we prove theorems. However it is a bit different to most
undergraduate math classes in the sense that we don’t emphasize definitions, and that we don’t try to construct
a theory step by step. Rather: we look at fairly concrete questions, study them, and solve them and only later
try to infer what is the general philosophy. The general picture is too deep to be studied axiomatically at this
point. One of the goals is to teach what are the key mathematical mechanisms to understand lattice models:
how should one analyze them, what should one look for, what techniques work.

1.2. Lattice Models. Lattice Models are at the heart of many fields of science:

• Statistical Mechanics: how macroscopic interactions
• Quantum Field Theory: high-energy physics (e.g. Higgs boson)
• Biology: models of cells, etc.
• Ecology: models of growing plants
• Economics: models of interacting agents
• Image procesing: probabilistic models of images
• Machine learning: models of computation

1.3. Five Topics. There are mainly five topics that we will discuss in this class, each associated with one or
two non-trivial results:

• Simple Random Walk: Recurrence and Transience and PDEs
• Loop-Erased Random Walk and Uniform Spanning Tree: Wilson’s Theorem and the Matrix-Tree Theo-

rem
• Percolation: Phase Transition and Cardy’s Formula
• Ising Model: Graphical Representations, Sampling and Phase Transition
• Dimer Model: counting dominos

2. Simple Random Walk: Recurrence and Transience

2.1. What is a Simple Random Walk? We look here at discrete-time simple random walks (Xn)n≥0 on a
locally finite graph G, that jump at integer times.

• Simple random walk on Z: we start at 0 and at each time, we jump either left or right, with probabilities
1
2 , independently of the past.

• Simple random walk on Z2: we start at 0, and at each time, we jump on one of the four neighbors, with
probabilities 1

4 , independently of the past.
• On a locally finite graph G: start at an origin vertex, and if Xn = v, then Xn+1 is one of the neigbhors

of v, chosen with equal probability, independently of the past.

2.2. What are Basic Interesting Questions?

• How does the SRW look on the long term?
• How does a SRW trajectory look from far away?
• Does a SRW ever come back to the origin?
• Are there connections with other random objects?
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2.3. A Recent Result. At this point, it is worth mentioning a beautiful result of Lawler, Schramm and Werner
(we won’t prove it, but it is nice to know):

• Consider two independent SRW (Xn)n and
(
X̃n

)
n

on Z2 from (0, 0)

• Call Sn and S̃n the set of points visited by Xn and X̃n during the times k = 1, . . . , n (not including
k = 0).

• We have that Pn := P
{
Sn ∩ S̃n = ∅

}
decays like n−5/8 as n→ ∞ (i.e. logPn/ log

(
n−5/8

)
→ 1).

2.4. Recurrence and Transience: a Theorem.
• If we consider the simple random walk on Z or Z2, with probability 1
• On Zd for d ≥ 3, with probability > 0 it will not come back to the origin (Theorem attributed to Polya).
• This result is fairly robust (it works on various graphs); in this class we will only look at the square

lattice case
• The strategy of the proof: reduce the question to one about the expected number of visits of the origin,

which is a Markov chain quantity and we will compute this quantity number using Fourier analysis.

2.5. The Number of Visits to the Origin.
• Let Nd be the number of times that a SRW on Zd come back to the origin, and πd the probability of

ever coming back, i.e. πd = P {Nd ≥ 1}.
• Then if πd = 1, with probability 1, Nd = ∞ and if πd < 1 and E [Nd] < ∞ (and of course Nd < ∞ with

probability 1).
• Why? If πd = 1, it is obvious: use the Markov property after the first time back to the origin, i.e. the

SRW after that time is just like a ‘new’ SRW, which will come back.
• We have that P {Nd ≥ k} = (πd)

k by the Markov property again, and hence
∑∞

k=1 P {Nd ≥ k} = πd

1−πd
if

πd < 1.
• Now conclude that E [Nd] =

πd

1−πd
<∞ if πd < 1 by using an elementary lemma.

• Lemma: if X ≥ 0 is a random integer the E [X] =
∑∞

j=1 P {X ≥ j} (works also if both sides are +∞).
• Proof of the lemma:

E [X] =

∞∑
k=1

kP {X = k} =

∞∑
k=1

∞∑
j=1

1{j≤k}P {X = k} =

∞∑
j=1

∞∑
k=j

P {X = k} =

∞∑
j=1

P {X ≥ j} .

• So: we need to show that E [Nd] = ∞ if d ≤ 2 and E [Nd] <∞ if d ≥ 3.
• Since E [Nd] is decreasing with d (why?), we just need to prove the result in dimensions 2 and 3.

2.6. Markov Chain.
• For x, y ∈ Zd and k ≥ 0, let Qk (x, y) be probability that a SRW starting from x arrives at y after exactly
k steps.

• We have the ’matrix-multiplication-like’ formula Qk+1 (x, y) =
∑

z∈Zd Qk (x, z)Q1 (z, y)
• Indeed: we need to jump from x to some point z in k step and then from z to y in one step, and both

probabilities are independent by the Markov property.
• Let us write Pk (x) for Qk (0, x). By translation invariance we have Qk (x, y) = Qk (0, y − x) and hence
Pk+1 (x) =

∑
Pk (z)P1 (x− z).

• Let us write P for P1. By definition P (x) = 1
2d if x is one of the 2d neighbors of the origin (i.e.

(±1, 0, . . . , 0), (0,±1, . . . , 0), ... , (0, . . . 0,±1)) and P (x) = 0 otherwise.
• If for two functions f, g : Zd → C, we denote by f ⋆g the (’convolution’) function defined by (f ⋆ g) (x) =∑

z f (z) g (x− z), then Pk = P ⋆k, where P ⋆k := P ⋆ · · · ⋆ P (k times).
• Since we have E [Nd] =

∑∞
k=1 Pk (0), what we need to compute is

∑∞
k=0 P

⋆k (0).
• We would prefer a sum of products (geometric series) to a sum of convolutions. How to transform

convolutions into products? Fourier analysis.

2.7. Fourier Analysis in d = 1.
• A function f : Z → C is nothing but a (bi-infinite) series. Let us assume that everything converges.
• If we a bi-infinite series, we can form a corresponding Fourier series Ff (x) :=

∑
k f (k) e

ikx , which is
2π-periodic function

• We have the classical inversion formula: from Ff (x), we can recover f (k) by f (k) = 1
2π

´ π
−π

Ff (x) e−ikxdx

(why?).
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• If h = f ⋆ g, for f, g : Z → C, we have that F (h) = F (f)F (g).
• Proof: take

∑
k f (k) e

ikx
∑

ℓ g (ℓ) e
iℓx , make a change of variable

∑
k f (k) e

ikx
∑

ℓ g (ℓ− k) ei(ℓ−k)x and
re-arrange into

∑
k (

∑
ℓ f (k) g (ℓ− k)) eikx, which gives Fh (x).

• So for our problem, we have (assuming things converge), we have F
(
P ⋆k

)
(x) = (F (P ))

k
(x) and hence

F
(∑∞

k=0 P
⋆k
)
(x) = 1

1−F(P ) (x).
• Since FP (x) = 1

2

(
eix + e−ix

)
= cos (x), we have F

(∑∞
k=0 P

⋆k
)
(x) = 1

1−cos(x) .
• So, if we want to compute E [Nd=1] =

∑∞
k=0 P

⋆k (0), we use the inversion formula and obtain
´ π
−π

1
1−cos(x)dx.

• Since cos (x) = 1− 1
2x

2 + · · · near x = 0, this integral is divergent, so the expectation is infinite.
• How to make this more rigorous: dampen the sum by adding a mass term

∑∞
k=0 λ

kP ⋆k (0) for λ < 1,
get
´ π
−π

1
1−λ cos(x)dx, which is finite (and absolutely convergent) and then let λ → 1 and use monotone

convergence.

2.8. Fourier Analysis in d ≥ 2.
• The analysis is pretty much the same.
• A function f : Zd → C gives rise to a Fourier series Ff (x) of d variables defined by

∑
k∈Zd f (k) eik·x

(we wrote k · x := k1x1 + · · ·+ kdxd), and this function is periodic in each variable.
• The inversion formula is given by f (k) =

(
1
2π

)d ´ π
−π

· · ·
´ π
−π

F (x) e−ik·xdx1 · · · dxd (same proof as before).
• For exactly the same reasons as before F (f ⋆ g) = F (f)F (g).
• Hence for our problem, we have as before F

(∑∞
k=0 P

⋆k
)
(x) = 1

1−F(P ) (x).

• Now F (P ) (x) = 1
d

∑d
j=1 cos (xj) and hence we get (formally) E [Nd] =

(
1
2π

)d ´ π
−π

· · ·
´ π
−π

1
1− 1

d

∑
cos(xj)

dx1 · · · dxd
• Is this integral divergent or convergent? Obviously, the only singularity in the hypercube [−π, π]d is at
x1 = · · · = xd = 0, so let’s see what happens there.

• Near (0, . . . , 0), we have 1
d

∑
cos (xj) = 1− 1

2d

∑d
j=1 x

2
j + · · · and hence we should study the convergence

around the singularity.
• In d = 2, we can do a polar change of variable, to get

´ ϵ
0

´ 2π
0

1
r2 rdrdθ, which is infinite because

´ ϵ
0

1
rdr =

∞, but ’barely infinite’.
• In d = 3, we can do a spherical change of variable to get

´ ϵ
0

´ 2θ
0

´ π
2

−π
2

1
r2 r

2 cosφdφdθdr, which is obviously
finite.

• To make things rigorous, exact same trick as in 1D.

3. Simple Random Walks and PDEs

3.1. Goal of this lecture.
• Explain the connection between: simple random walks and the Laplace equation ∆f = 0, and the heat

equation ∂tf = ∆f .
• This connection is useful to

– study the continuous limit of random walks (in particular, calculate things on it)
– understand Laplace equation and the heat equation (in particular, obtain qualitative results easily)

3.2. One-Dimensional Problem.
• We have a segment {1, . . . , n− 1} ⊂ Z, with boundary {0, n} and B = {n}.
• Consider H (k), the chance that a SRW from k ∈ {0, . . . , n} hits n before 0? Obviously H (0) = 0 and
H (n) = 1.

• Now we have a relation for inner vertices: for k ∈ {1, . . . , n− 1} ,we haveH (k) = 1
2 (H (k − 1) +H (k + 1)),

which is called the mean value property.
• Why? The SRW jumps to either k + 1 or k − 1 with probabilities 1

2 ,
1
2 . Once it is there, its chances to

hit 0 are H (k − 1) and H (k + 1) by Markov property.
• How many equations do we have ? n − 1 linear equations. How many unknowns? The values of H at
{1, . . . , n− 1}, so n− 1, too. So, it looks like we have enough.

• Can we guess a solution? A linear function with the appropriate boundary conditions is natural: H (k) =
k
n .

• Can we argue there are no other solutions? If we had two, we could take their difference D, which would
satisfy D (0) = D (n) = 0 and the mean value property.
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• Why must D = 0? A simple argument, called maximum principle: if it weren’t equal to 0, then it would
have either a strict maximum or a strict minimum on {1, . . . , n− 1}.

• But that would contradict the mean value property (how can a strict maximum/minimum be equal to
the values of the two neighbors?).

3.3. Discrete Harmonic Measure in General.
• Take a graph G ⊂ Zd with boundary ∂G, fix a subset of the boundary B ⊂ ∂G. To visualize: think for

instance d = 2, G is a rectangular box, the subset B is the bottom of the box.
• Take a SRW starting from a vertex x of G, and stop it when it hits ∂G. What is the chance H (x,B)

that it has hit B?
• Obviously H (x,B) = 1 if x ∈ B and H (x,B) = 0 if x ∈ ∂G \B. What about the interior of G?
• For the same reasons as in one-dimension, we have that H (x,B) is discrete harmonic, i.e. it satisfies the

mean-value property H (x) = 1
2d

∑
y∼xH (y) for all x ∈ G.

• And for the same reasons as before (maximum principle), H (·, B) is the unique discrete harmonic function
that is equal to 1 on B, 0 on ∂G \B.

3.4. Discrete Dirichlet Problem.
• Given a graph G with boundary ∂G and a function f : ∂G → R, what is the unique (why?) discrete

harmonic function F : G ∪ ∂G→ R such that F |∂G ≡ f?
• This kind of problem is particularly useful to extend a function on ∂G in a natural manner:

– for instance if f : ∂G→ R is the value of an eletric potential on a grid G, then F is the value of the
potential inside

– another (related) example: if we put some temperature on the boundary of a grid and wait until
the temperature equilibrates inside, it will be given by F

• Answer: for a SRW (Xx
k )k≥0 from x ∈ G∪ ∂G, let τx be the first k ≥ 0 such that Xx

k ∈ ∂G, i.e. the first
time the random walk exits G. Then F (x) = E [f (Xx

τx)].
• Why? F has the correct boundary values (obvious) and is discrete harmonic because of the Markov

property. And it is unique with these properties (why?).
• Hence: the space of discrete harmonic functions on G ∪ ∂G and the space of functions on ∂G have the

same dimension and are in one-to-one correspondence (why?).

3.5. Discrete Dirichlet Laplacian.
• Let us consider a graph G with boundary ∂G and a fixed function f : ∂G→ R, called Dirichlet boundary

condition.
• The Laplacian with boundary condition f is the linear map ∆f

G : RG → RG defined by ∆f
Gu (x) :=

1
2d

∑
y∼x (u (y)− u (x)), where u (y) := f (y) for each y ∈ ∂G.

• For any fixed G, ∂G, f the Laplacian ∆f
G is injective by the maximum principle and hence it is invertible

by dimensionality.
• Actually (exercise), the discrete Laplacian with 0 boundary conditions is negative definite and so is its

inverse.
• The quadratic form E (u) := −u ·∆0

Gu (where · is the usual dot product) is called the Dirichlet energy
and it is minimized by the solution to the Dirichlet problem.

3.6. Discrete Dirichlet Green’s Function and Poisson’s equation.
• Consider a finite graph G and its discrete Laplacian ∆ := ∆0

G. We know ∆ is invertible. What is its
inverse?

• Consider for each x ∈ G, the SRW (Xx
k )k≥0 from x, the stopping time τx (the first time that Xk exits

G) and define the function U (x, y) := E
[∑τx−1

k=0 1Xk=y

]
, i.e. the number of visits of y starting from x

before hitting ∂G.
• We have that (∆U (·, y)) (x) = 0 for all y ̸= x by the Markov property (the SRW doesn’t visit y at time

0) and (∆U (·, y)) (y) = −1 (the time 0 visit of y lost after jumping away by one step).
• What does this mean? If we write the operators in a matrix notation, it means that (∆U)x,y = −δx,y,

i.e. ∆U = −Id, i.e. ∆−1 = −U .
• This allows one to solve the discrete Poisson equation ∆u = g, u|∂G ≡ 0 for g : G → R given: we have

that u = −Ug is the solution.
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3.7. Discrete Heat Equation.

• Consider a finite graph G, with boundary ∂G. Consider a SRW (Xx
k )k≥0 as usual. Let ∆ := ∆0

G

• Set H (x, t) := P {Xx
k ∈ G ∀k ≤ t}, i.e. the probability that a SRW from x stays in G until time t at

least.
• We have that

∑
y∼x

1
4H (y, t) = H (x, t+ 1) and hence ∆H = [dt]H, where [dt]F := F (t+ 1)−F (t) for

F : N → R and we take ∆ and [dt] with respect to the relevant variable (space and time respectively).
• The boundary conditions are H (·|∂G, t) = 0 for all t ≥ 0 and H (·|G, 0) = 1.
• The solution is obviously unique in this case.

4. Convergence

4.1. Continuous Operators.

• Let us now consider the grid δZd, i.e. the lattice rescaled by a factor δ > 0, called the mesh size: the
distance between two adjacent vertices becomes δ. What happens as δ → 0?

• Let us look at a smooth bounded domain G ⊂ Rd and at its discretization Gδ := G ∩ δZd. Whenever
needed, identify points of G with the closest vertices of Gδ.

• We have that if F : G → R is a C2 function then 1
δ2∆Gδ

F (x) → ∆F (x) for all x ∈ G, where ∆ =∑d
i=1

∂2

∂x2
i
. Why? Taylor expand F .

4.2. Convergence of Solutions.

• There are many questions and many answers of this type. Let us ask the most natural one: consider
a family of discrete approximations (Gδ)δ>0 of a smooth domain of Rd and fix piece of the boundary
Bδ := ∂Gδ ∩ Λ for an open set Λ ⊂ Rd.

• Statement: as δ → 0 the harmonic measure HGδ
(z,Bδ) converges to HG (z,B), where HG (·, B) is

continuous harmonic.
• There are many other similar statements, which can be proven with similar techniques.

4.3. Convergence Strategy.

• Interpolation: we want to use Arzelà-Ascoli precompactness results, so we first interpolate our functions
• Regularity estimates: we need to make sure that the function is not ’too crazy’, i.e. ’it doesn’t wiggle

too much’
• A priori boundary estimates: make sure that as we approach the parts of the boundary where the

harmonic measure is 0, we get close to 0 and similarly as we get close to 1
• Uniqueness result: there is a unique continuous harmonic function F with the relevant boundary condi-

tions.
• Classical conclusion: we can apply Arzelà-Ascoli to make sure that we have convergence along subse-

quences, make sure it has the relevant boundary values and reason by contradiction to ensure convergence
if we have uniqueness.

4.4. A priori estimates.

• The idea is to use a discrete Harnack-type inequality to control the discrete partial derivatives of discrete
harmonic functions.

• For a function f : δZd → R, and k ∈ {1, . . . , d}, we denote by ∂kδ f the partial derivative defined by
∂kδ f (x) = f (x+ δek)− f (x), where ek is the k-th vector of the canonical basis.

• The Harnack inequality: for a discrete harmonic function f defined on Bδ (x) :=
{
z ∈ Zd : |z − x| ≤ 1

}
,

there exists C > 0 such that for all k ∈ {1 . . . , d}∣∣∂kδ f (x)∣∣ ≤ C max
z∈Bδ(x,r)

|f (z)|

• With the same arguments, it can be seen that if we look on a ball of radius r > 0, we get:∣∣∂kδ f (x)∣∣ ≤ C max
z∈Bδ(x,r)

|f (z)| /r
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4.5. Boundary control.
• We already know our functions are between 0 and 1 and behave nicely inside; what we need to know is

that they don’t suddenly jump as we approach the boundary
• First, notice that they are going to jump when we go from Bδ to its complementary Cδ := ∂Gδ

• So, let us just look at Br
δ := {z ∈ Bδ : d (z, Cδ) ≥ r} and Cr

δ := {z ∈ Cδ : d (z,Bδ) ≥ r} for some small
fixed r > 0 .

• What we want to show (r is fixed): for any ϵ > 0, there exists ρ > 0 such that for all δ > 0 and z ∈ Gδ

with d (z,Br
δ ) ≤ ρ then |HGδ

(z,Bδ)− 1| ≤ ϵ and for all z ∈ Gδ with d (z, Cδ) ≤ ρ then |Hδ (z,Bδ)| ≤ ϵ.
• Let us prove this in 2D: the inequality is called the discrete Beurling estimate.

4.6. Discrete Beurling estimate in 2D.
• The discrete Beurling estimate is an explicit form of the control that we need to deal the harmonic

measure Hδ near boundary value points: it states that there exists constants C,α > 0 such that for all
z’s

|Hδ (z,Bδ)| ≤ C

(
d (z,Bδ)

d (z, Cδ)

)α

• The strong discrete Beurling estimate (which we will not prove in this class) gives that the optimal (i.e.
biggest) universal α that can be chosen is α = 1

2 .
• The prove it, we need to prove that with (polynomially) high probability a SRW starting from z will hit
Bδ before Cδ: we must find a collection of of independent ‘challenges’ that the SRW must overcome.

• We can assume d := d (z,Bδ) < d (z, Cδ) := D (otherwise there is nothing to prove) and construct k =
⌊log2 (D/d)⌋ concentric annuli around z of inner radii d, 2d, 4d . . . , 2kd ≤ D and outer radii 2d, 4d, 8d, . . .

• It is easy to see (but a bit tedious to write) that there exists a constant κ > 0 such that for each such
annulus, the probability that a SRW entering from the inner boundary closes a loop around the inner
radius before hitting the outer boundary is at least κ.

• Since each of these annuli intersects Bδ, the probability at a SRW starting from z hits Cδ before Bδ is
at most (1− κ)

k ≤ (d/D)
α for some α > 0: if the SRW completes a loop in any of those, then it hits Bδ.

4.7. General Case.
• In dimension greater than 2, there is no discrete Beurling estimate, so one must add conditions about

the boundary in order not to have strange behavior.
• If for instance, the boundary is smooth, one can argue that the neighborhood of each boundary point

looks like a half-space and use Beurling-like arguments.

4.8. Discrete Harnack Inequality.
• Let us prove the 2D Harnack inequality: the result and the proof are essentially the same in all dimensions.
• Consider the discretization Dδ of a disk D = {|z| < r} by δZ2 and identify the points of the plane with

complex numbers
• Let us show the following inequality: for any any discrete harmonic function f : Dδ → R, we have

|f (iδ)− f (−iδ)| ≤ Cst · δ · max
z∈∂Dδ

|f (z)|

• Similar arguments allow to similarly bound |f (δ)− f (0)| and |f (iδ)− f (0)|
• The idea is to represent f (±iδ) E

[
f
(
X±iδ

τ±

)]
for SRWs starting from ±iδ where τ± are the hitting times

of ∂Dδ and compare the expectations.
• The idea to compare the expectations is to couple the SRWs

(
Xiδ

n

)
n≥0

and
(
X−iδ

n

)
n≥0

in such a way
that most of the time, they hit ∂Dδ at the same place.

• The coupling is the following: sample
(
X−iδ

n

)
n≥0

by taking the mirror image with respect to R of(
Xiδ

n

)
n≥0

until the first time ς that Xiδ
ς ∈ R, after which we set X−iδ

n = Xiδ
n .

• It is easy to see that this is a coupling (i.e. that X−iδ
n is a SRW) and that for this coupling

|f (iδ)− f (−iδ)| ≤ P
{
τ+ < ς

}
max
z∈∂Dδ

|f (z)| .

• We now just need to bound P {τ+ < ς}, i.e. the chance that Xiδ
n hits ∂Dδ before R by Cst · δ.

• This can indeed be compared up to constant to the chance that a SRW in a strip δZ2∩{0 < ℑm (z) < 1}
hits the top before the bottom.
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• That probability equals δ by the previous section (by translational invariance of the strip, this becomes
a 1D problem).

4.9. Uniqueness.
• Now take δ → 0 and then r → 0, we get a function on G, which is smooth, has boundary value 1 on B

and boundary value 0 on ∂G \B; is it unique?
• As usual, by linearity we just need to argue that we have a continuous maximum principle
• Observe that if ∆f (x) > 0, then f can’t have a maximum (even a non-strict one) at x: otherwise the

Hessian Hf |x would be negative semi-definite, and ∆f (x) = Tr
(
Hf

∣∣
x

)
≤ 0, a contradiction.

• How can we then argue that f cannot have a maximum? The idea is to reason by contradiction: if
there were a maximum, the eigenvalues of the Hessian would have to be non-positive, and their sum (the
Laplacian) could not be positive.

• Similarly, if ∆f (x) < 0, then f can’t have a minimum.
• How do we get that if ∆f = 0, there is no > 0 maximum.
• Suppose without loss of generality there were a maximum of value 1000 inside, that the domain were of

radius 1. If we added the function ∥x∥2 to f , we still would have that f + ∥x∥2 has a maximum inside
(we would be equal to at most 1 on the boundary, and at least 1000 inside). But that function would
now have a positive Laplacian.

• The same works to rule out a < 0 minimum.

4.10. Two-Dimensional Harmonic Functions.
• We can look at complex-valued functions f : C → C as functions F : R2 → R2.
• What can we say about holomorphic functions as functions of two real variables? They satisfy Cauchy-

Riemann equations ∂1F1 − ∂2F2 = 0, ∂2F1 + ∂1F2 =0 .
• It is easy to see that holomorphic functions are actually harmonic: ∂11F1 = ∂12F2 = ∂21F2 = −∂22F1

and ∂11F2 = −∂22F2 for the same reason, so ∆F = 0.
• Conversely, it can be shown that any real-valued harmonic function on a simply-connected domain (i.e.

with no holes) is the real part of a holomorphic function.
• We can use this to find explicit harmonic functions; some obvious properties (composition of holomorphic

functions is holomorphic) are going to be useful

4.11. Exact Calculations.
• An example of a nice question that can be solved using the above method: consider the unit disk
D :=

{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
and discretize it by Dδ

• What is the chance that a SRW from (x, y) exits Dδ through the upper-right quadrant as δ → 0?
• What we want to find: a function that is a harmonic on D and equals 1 on

{
eiθ : θ ∈ [0, π/4]

}
and 0 on

the rest of ∂D.
• A conformal mapping to the right half plane HE := {z ∈ C : ℜe (z) > 0} is − z+1

z−1 and its inverse is z−1
z+1

• Another example: it can be shown that the function z 7→ 2
√
2π

Γ2(1/4)

´ z
0

1√
ζ(ζ2−1)

dζ maps H to the square

[−1, 0]× [0, i] (with −1 7→ 1, 0 7→ 0, 1 7→ i, and ∞ 7→ −1 + i).
• If we want to find 1/2-level line for the probability that a SRW hits the top of the box, we can look at

the image of a circle on H via that mapping.

5. Uniform Spanning Tree

5.1. Loop-Erased Random Walk.
• A loop-erased random walk (LERW) is built by applying a loop-erasure procedure to a simple random

walk.
• The so-called chronological loop-erasure procedure is as follows: whenever the closes a loop, i.e. arrives

at time n to a vertex where it has come before at time tn, the list of points visited between times tn and
n is erased.

5.2. Spanning Trees and Wilson’s algorithm.
• A spanning tree of a connected graph G is a subgraph of G that is a tree (connected, no cycle) and that

contains all the vertices of G.
• There is a finite number of spanning trees of a finite graph, and this number is given by the matrix-tree

theorem (homework)
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• Wilson’s algorithm is a very efficient way to sample a spanning tree using by adding branches using
LERW.

• The idea is to choose a root x0 and to construct a growing family of trees {x0} = T0 ⊂ T1 ⊂ · · · ⊂ Tk
such that Ti+1 \ Ti is a LERW from an arbitrary vertex of xi ∈ G \ Ti stopped upon hitting Ti and
stopping when we get a spanning tree.

• Obviously, we get a spanning tree with this method. The question is: why is the measure uniform?
• The idea is to construct a probability space made of ’stacks of arrows’ that generates the tree and the

loops that were erased in the LERW
• This will show that the measure is uniform and the tree is actually independent of the choices of x0, . . . , xr.

5.3. Stack of Cycles.

• To each vertex x ∈ G \ {x0}, associate an infinite stacks of random ’arrows’ that points to the neighbors
of x, uniformly, independently of each other.

• These arrows can be used to sample a SRW from any vertex x ∈ G\{x0}, stopped upon hitting x0: when
we are at a vertex jump to the neighbor pointed by the arrow at the top of the stack and remove it.

• If we look at the arrows at the top of the stacks, they form a number of cycles, plus a tree pointing to
the root x0

• We can take the arrows of a cycle at the top of the stack and remove it: we call this a ’cycle removal’
procedure

• If we keep removing cycles until we don’t have any (this will happen with probability one), we get a tree
• What we will show: the order in which we remove the cycles is irrelevant and the tree that we get is

sampled with uniform probability

5.4. Cycle Lemma.

• The order in which we remove the cycles is essentially irrelevant: if there is a cycle C that we can remove
at some point and we choose to remove some other cycles C1 . . . , Ck, we can still remove C later

• Indeed, if there is another cycle, either it lives on disjoint vertices and then it doesn’t affect the fact that
C can be removed later, or it has some intersection.

• If there is some intersection, let us consider the first Cj with some intersection: we will show that actually
C = Cj .

• Indeed, take a vertex v in the intersection, and follow the arrow at the top of the stack: it must be the
same for C and Cj (because they are taking the first arrow from the stack above v).

• But then the next vertex (following the arrow) is also the same for C and Cj , and so on and so forth. So
we get C = Cj .

5.5. Probability Measure.

• Once we understand the picture (a collection of loops and a tree just below), it is fairly easy to show
that the tree that we get is uniform

• Let us look at a possible ’history’, i.e. a set of loops sitting on top of a tree. It has the same probability
as an alternate history with the same set of loops on top of any different tree.

• To compute the probability of a tree, we sum over all the possible ’histories’ leading to it: we deduce
from the above remark that each tree has the same probabiity.

6. Percolation

6.1. Critical percolation.

• We consider critical percolation on the honeycomb lattice: each hexagon is colored in black/white, with
probability 1

2/
1
2 , independently of the others.

• Percolation is originally a model of a porous medium: we can think that black hexagons are filled with
matter, while white ones are empty.

• It is natural to ask about connectivity questions for that medium: is there a path made of white hexagons
joining two sets?

• The probability 1
2/

1
2 is critical [Kes80]: if one color is slightly favored over the other, then we will have

an infinite connected component of that color.
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6.2. Cardy’s formula.
• Consider a quad (Ω, a, b, c, d) (i.e. domain with ∂Ω a simple curve and four points a, b, c, d ∈ ∂Ω in ccw

order), a discretization (Ωδ)δ>0 by a honeycomb domain of mesh size δ, and identify a, b, c, d with the
closest boundary vertice.

• Crossing probabilities: what is the chance PΩδ
{[ab] ↭w [cd]} that there is a path of white hexagons

linking [ab] to [cd]?
• Conformal invariance of crossing probabilities (Smirnov, 2001): if (Ω, a, b, c, d) and

(
Ω̃, ã, b̃, c̃, d̃

)
are

conformally equivalent (i.e. there exists a conformal map Ω → Ω̃ with a, b, c, d 7→ ã, b̃, c̃, d̃), then

lim
δ→0

PΩδ
{[ab] ↭w [cd]} = lim

δ→0
PΩ̃δ

{[
ãb̃
]
↭w

[
c̃d̃
]}

.

• There exists an explicit formula (Cardy’s formula) for the equilateral triangle: if ∆ is an equilateral
triangle with vertices a, b, c, then limδ→0 P∆δ

([ab] ↭ [cd]) = |c− d| / |c− a|.

6.3. Riemann’s mapping theorem.
• Let Ω and Ω̃ be two Jordan domains (i.e. ∂Ω and ∂Ω̃ are closed simple curves), and let a, b, c ∈ ∂Ω and
ã, b̃, c̃ ∈ ∂Ω̃ be distinct boundary points, in counterclockwise (ccw) order.

• Then there exists a unique conformal mapping φ : Ω → Ω̃ with a, b, c 7→ ã, b̃, c̃.
• This statement can be generalized to arbitrary simply-connected domains, provided the boundary points

are replaced by prime ends.

6.4. Cardy’s formula and main statement.
• For a Jordan domain (Ω, a1, a2, a3), there exists a unique conformal mapping φ from Ω to the equilateral

triangle △ with vertices 1,±
√
3
3 i, with a, b, c 7→ 1,

√
3
3 i,−

√
3
3 i.

• Carleson’s formulation of Cardy’s formula [Smi01]: limδ→0 PΩδ
{[a1a2] ↭w [a3a4]} = ℜe (φ (a4)) .

• By uniqueness of the conformal mapping φ : Ω → ∆, this proves the conformal invariance.
• To prove Cardy’s formula, we prove the following statement:

– Set A1 := [a2a3], A2 := [a3a1] and A3 := [a1a2]. For a vertex z ∈ Ωδ define H1
δ (z), H

2
δ (z) and

H3
δ (z) by

Hµ
δ (z) := PΩδ

{aµ and z are separated from Aµ by a white path} .

– We set φδ := H1
δ +

√
3
3 iH

2
δ −

√
3
3 iH

3
δ . The main statement reads

φδ −→
δ→0

φ.

– Evaluating with a4 ∈ [a3a1], we get Cardy’s formula.

6.5. Strategy for the proof.
• Precompactness: we want to show that (φδ)δ>0 is uniformly equicontinuous on Ω. Let φ be a subsequen-

tial scaling limit φδn → φ (uniqueness of the limit will yield the full convergence).
• Boundary conditions: we show that if φδn → φ, then φ is a homeomorphism ∂Ω → ∂△ with a1, a2, a3 7→
1,

√
3
3 i,−

√
3
3 i.

• Analyticity: we show that if φδn → φ, then φ is analytic. This will follow from approximate discrete
Cauchy-Riemann relations.

• To conclude, i.e. show that φ : Ω → △ is a bijection inside Ω. We use the argument principle, take
w ∈ C and want to show that φ (z)− w has a single zero in Ω iff w ∈ △:

# {zeros of φ (z)− w} =
1

2πi

˛
∂Ω

φ′ (z)

φ (z)− w
dz =

1

2πi

˛
∂△

1

ζ − w
dζ = 1△ (w) .

6.6. Symmetry and self-duality. Like for the random walks, we first need some simple a priori estimates for
the precompactness part.

• Suppose that the honeycomb lattice has edges parallel to 1, e±2πi/3 and consider the square S = [0, 1]×
[0, i], and discretize S by a symmetric honeycomb domain Sδ, with δ > 0 small.

• We have PSδ
{[0, i] ↭w [1, 1 + i]} = 1

2 : either we have a horizontal white path or a vertical black path
crossing, both events have the same probability. This works on any symmetric domain.
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6.7. RSW estimate.

• Consider the rectangle R = [0, 2] × [0, i] and a symmetric discretization Rδ. We would like to show the
Russo-Seymour-Welsh (RSW) estimate: we havePRδ

{[0, i] ↭w [2, 2 + i]} ≥ 1
16 .

• To prove RSW, we will want to paste white paths together. We need the Fortuin-Kasteleyn-Ginibre
(FKG) inequality:

– For A and B events of the type ’there is a white path from here to there’, then P (A ∩ B) ≥
P (A)P (B), or equivalently P (A|B) ≥ P (A).

– The latter is intuitive, because the existence of a white path somewhere can only increase the chances
of seeing a white path elsewhere.

• With FKG, we can prove RSW:
– With probability 1

2 , there is a path γ : [0, i] ↭ [1, 1 + i], made only of white hexagons, take the
lowest such path possible. Whatever is above it is independent percolation.

– Let γ̃ be the reflection of γ with respect to the line 1 + iR and let Dδ be the connected component
Rδ \ (γ ∪ γ̃) lying above γ ∪ γ̃ and intersecting the line 1 + iR.

– With probability 1
2 , there is a path λ ⊂ Dδ linking the bottom-left part of ∂Dδ to the top-right one,

again by symmetry. Joining γ and λ yields a white path [0, i] ↭ [1 + i, 2 + i].
– So, we have PRδ

(A) ≥ 1
4 , where A := {[0, i] ↭w [1 + i, 2 + i]}. By symmetry, we have PRδ

(B) ≥ 1
4 ,

where B := {[2, 2 + i] ↭w [i, 1 + i]}.
– If both A and B occur, there is a white path [0, i] ↭ [2, 2 + i]. By FKG, P (A ∩ B) ≥ 1

16 , which is
the desired result.

• With FKG and RSW, the probability of a crossing in the discretizations of rectangles [0, L] × [0, i] are
uniformly bounded from below with respect to δ > 0 (and from above by duality):

– We can paste several crossings which exist with positive probability from RSW.

6.8. Annulus crossing estimate.

• By FKG and RSW, we get that the probability of a white loop in an annulus of inner and outer radii 1
and 2 is uniformly bounded from below with respect to δ (we paste again).

• For r,R > 0 consider the discretization Aδ of an annulus of inner radius r and outer radius R. The
probability that a black path links the inner circle to the outer circle is bounded by C

(
r
R

)α, for universal
α,C > 0.

– To prove that, we decompose Aδ into k := ⌊log2
(
R
r

)
⌋ concentric annuli of inner and outer radii

2j−1r and 2jr for j = 1, . . . , k
– For each annulus, there is a uniformly positive chance of a white crossing in it.

6.9. Precompactness.

• To show precompactness, we will show that
(
H1

δ

)
δ

is uniformly Hölder continuous (the same reasoning
applies to H2

δ and H3
δ )

– There exists C > 0 and α > 0 such that for any x, y ∈ Ωδ,
∣∣H1

δ (x)−H1
δ (y)

∣∣ ≤ CdΩ (x, y)
α
, where

dΩ (x, y) is the length of the shortest path from x to y in Ω
• How to prove this? Let us assume x and y close (otherwise, there is nothing to prove).

– We have that (writing ∥w for ‘there is a white path separating’)

H1
δ (x)−H1

δ (y) = PΩδ
{a1, x∥wA1} − PΩδ

{a1, y∥wA1}
= PΩδ

({a1, x∥wA1} \ {a1, y∥wA1})− P ({a1, y∥wA1} \ {a1, x∥wA1}) .

– Let us study the probability of the event E1 (x, y) = {a1, x∥wA1} \ {a1, y∥wA1}.
∗ We see that the occurence of E1 implies the existence of a white path from A2 to A3 passing

between x and y, and a black path from A1 to A1 separating x and y.
∗ In turn, each such path, implies that a white or a black path goes from a ’microscopic’ circle

(i.e. of radius dΩ (x, y)) to a macroscopic circle (i.e. of radius dist ({x, y} , Aj) for j = 1, 2, 3).
∗ By topology argument, at least one of the macroscopic circles is ’big’ (i.e. greater than a

uniform ϵ), and we can bound the probability this path by the application of RSW above.
– Hence, we get P (E1 (x, y)) ≤ Cd (x, y)

α, and by symmetry, we deduce the Hölder-continuity.
• To extract converging subsequences, we extend φδ into a continuous function (by piecewise affine inter-

polation for instance), and use Arzelà-Ascoli: obviously (φδ)δ is bounded and equicontinuous.



LATTICE MODELS (MA1, EPFL) 11

• From now on, we will assume that φ is a subsequential scaling limit limδn→0 φδn , with φ = H1+i
√
3
3 H

2−
i
√
3
3 H

3.

6.10. Boundary conditions.

• We want to prove that φ is a homeomorphism ∂Ω → ∂∆, so we want to prove that it is a homeomorphism
A1 →

[
i
√
3

3 ,− i
√
3

3

]
, A2 →

[
− i

√
3

3 , 1
]
, A3 →

[
1, i

√
3

3

]
.

• To prove that φ : A1 →
[
i
√
3

3 ,− i
√
3

3

]
is a homeomorphism, we should prove that

– For any z ∈ A1 H
1 (z) = 0. This follows from RSW:

∗ If z ∈ Ωδ is at microscopic distance from A1, then if Q1
δ (z) happens, there is a white path

from z to A2 and to A3

∗ At least one of A2 and A3 is at macroscopic distance from z. Hence PΩδ

(
Q1

δ (z)
)
→ 0.

– For any z ∈ A1 H
2 (z) +H3 (z) = 1. This follows essentially from self-duality:

∗ For z ∈ Ωδ, PΩδ

(
Q2

δ (z)
)
= PΩδ

(
Q̃2

δ (z)
)
, where Q̃2

δ = {a2, z ∥b A2}.
∗ At least one of Q3

δ (z) and Q̃2
δ (z) happens by self-duality and Q3

δ (z) ∩ Q̃2
δ (z) = ∅.

∗ This is ’regular’ by RSW (i.e. we can exchange limit z → A1 and δ → 0).
– As z ∈ A1 moves from a2 to a3, H3 (z) increases from 0 to 1.

∗ Let z, z̃ ∈ A1 with z closer to a2 than z̃. We have that Q3
δ (z) ⊂ Q3

δ (z̃), so let Rδ :=
Q3

δ (z̃) \Q3
δ (z) = {[zz̃] ↭b A2}.

∗ By RSW, the probability of the latter even is strictly positive, so H3
δ (z̃)−H3

δ (z) = Q3
δ (z̃) \

Q3
δ (z) is uniformly positive as δ → 0.

∗ By RSW, making concetric annuli, we see that H3
δ (a3) → 1 as δ → 0 (we can make concetric

annuli around a3).

6.11. Discrete Cauchy-Riemann equations.

• This is the key identity to prove analyticity (which is itself the key property).
• For an oriented edge e⃗ ∈ Ωδ from vertex x ∈ Ωδ to vertex y ∈ Ωδ and a function f : Ωδ → C we define

the discrete derivative ∂e⃗f by f (y)− f (x).
• For the functions Hµ

δ , we can write ∂e⃗H
µ
δ = ∂+e⃗ H

µ
δ − ∂−e⃗ H

µ
δ , where ∂+e⃗ H

µ
δ = PΩδ

(Qµ
δ (y) \Q

µ
δ (x)) and

∂−e⃗ H
µ
δ = PΩδ

(Qµ
δ (x) \Q

µ
δ (y)).

• Set τ = e2πi/3, write τ e⃗ for the rotation of e⃗ around its origin x by 2π/3 and set H1
δ , H

τ
δ , H

τ2

δ :=
H1

δ , H
2
δ , H

3
δ .

• The discrete Cauchy-Riemann equation: for µ ∈
{
1, τ, τ2

}
and an oriented edge e⃗, we have ∂+e⃗ H

µ
δ =

∂+τe⃗H
τµ
δ = ∂+τ2e⃗H

τ2µ
δ .

• Proof: suppose µ = 1, e⃗ an horizontal edge from left to right, let z, w ∈ Ωδ be the destinations of τ e⃗ and
τ2e⃗, and let us prove the first identity (everything is symmetric)

– We have that ∂+e⃗ H
µ
δ is the probability of Qµ

δ (y) \Q
µ
δ (x): this event means that there is white path

γ : A2 ↭ A3 passing between x and y and that there is a black path λ : A1 ↭ {x, z, w}.
– We have that ∂+τe⃗H

τµ
δ is the probability of Qτµ

δ (z) \ Qτµ
δ (x): this event means that there is white

path γ̃ : A1 ↭ A3 passing between x and z a black path λ̃ : A2 ↭ {x,w, y}.
– We construct a bijection between the ω ∈ Qµ

δ (y) \ Q
µ
δ (x) and the ω̃ ∈ Qτµ

δ (z) \ Qτµ
δ (x): because

each configuration has the same probability, this will prove the identiy:
∗ Let γ2 be the cw-most white path from e⃗ to A2, let λ be the ccw-most black path from e⃗ to
A1 and let γ3 be a the part of γ that goes from e to A3.

∗ Flip the color of all the hexagons that on the ccw side of γ2 and on the cw side of λ: the white
path γ3 becomes black, and this map is clearly invertible.

∗ Flip the color of all the hexagons: λ and γ3 become white, γ2 becomes black and we get a
configuration ω̃ ∈ Qτµ

δ (z) \Qτµ
δ (x).

– Hence, we have constructed a bijection, and ∂+e⃗ H
µ
δ = ∂+τe⃗H

τµ
δ .

6.12. Analyticity.

• To show analyticity, we use Morera’s criterion: a continuous function f : Ω → C is holomorphic if¸
γ
f (z) dz = 0 for any smooth closed contour γ (of course, the converse is true as well).
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• Why Morera’s criterion holds: we can define the antiderivative F (z) :=
´ z
w
f (ζ) dζ (i.e. the definition is

independent of the contour) and see that F (z) is holomorphic.
• We will show that ψ := H1 + τHτ + τ2Hτ2 and σ := H1 +Hτ +Hτ2 (notice φ = 1

3σ + 2
3ψ) are analytic

using Morera’s criterion, by computing Riemann sums on lattice-level and seeing that they tend to 0.
• Let γ ⊂ Ω be smooth and let γδ be a honeycomb discretization of γ that uses O

(
δ−1

)
edges, oriented in

ccw direction. Let us call Uδ the interior of γδ.
• Discretize

¸
γ
ψ (z) dz by Iδ (γ, ψ) :=

∑
e⃗∈Uδ

ψδ (e⃗) · e⃗, where we write ψδ (e⃗) := 1
2 (ψδ (y) + ψδ (x)) and

e⃗ := (y − x) (we will identify oriented edges with complex numbers).
• We can write

∑
e⃗∈γδ

ψδ (e⃗) · e⃗ =
∑

f∈FΩδ

∑
e⃗∈∂f ψδ (e⃗) · e⃗, where FΩδ

is the set of hexagonal faces of Ωδ

and ∂f is the boundary of f , oriented ccw.
• We can rewrite

∑
e⃗∈∂f ψδ (e⃗) · e⃗ = −

∑
e⃗∈∂f ∂e⃗ψδm (e⃗) by discrete resummation, where m (e⃗) is the

midpoint of e⃗.
• Writing e⃗∗ for the oriented edge of the dual of Ωδ that crosses e⃗ oriented such that e⃗∗/ (ie⃗) > 0, and

introducing c (f), the center of f , we get Iδ (γ, φ) = 1
2

∑
e⃗∈∂f ∂e⃗ψ · e⃗∗.

• Resumming over all the edges e⃗ ∈ E⃗Uδ
(taking each edge in its two possible orientations), we get Iδ (γ, ψ) =∑

e⃗∈E⃗Uδ
e⃗∗∂e⃗ψδ + boundary terms.

• The boundary terms tend to 0 as δ → 0: there are O
(
1
δ

)
of them, and they are of order o (δ) (the δ

comes from the edge length, the o (1) from ∂e⃗ψ, by RSW).
• We get

1

2

 ∑
e⃗∈E⃗Uδ

e⃗∗
(
∂+e⃗ H

1
δ + τ∂+e⃗ H

τ
δ + τ2∂+e⃗ H

τ2

δ

)
−

∑
e⃗∈E⃗Uδ

e⃗∗
(
∂−e⃗ H

1
δ + τ∂−e⃗ H

τ
δ + τ2∂−e⃗ H

τ2

δ

) ,

• We can resum over all the edges, to get
∑

e⃗∈E⃗Uδ
e⃗∗

(
∂+e⃗ H

1
δ + τ∂+e⃗ H

τ
δ + τ2∂+e⃗ H

τ2

δ

)
• We can resum once more to get∑

e⃗∈E⃗Uδ

e⃗∗
(
∂+e⃗ H

1
δ + ∂+τ2e⃗H

τ
δ + ∂+τe⃗H

τ2

δ

)
and resum one last time ∑

e⃗∈E⃗Uδ

(
e⃗∗ + τ (τ e⃗)

∗
+ τ2

(
τ2e⃗

)∗)
∂e⃗H

1
δ

.
• This last term equals 0, as e⃗∗ + τ (τ e⃗)

∗
+ τ2

(
τ2e⃗

)∗
= 0, so limδ→0 Iδ (γ, ψ) = 0, and hence ψ is analytic.

• Similarly for σ := H1+Hτ +Hτ2 , we get a cancellation because e⃗∗+(τ e⃗)
∗
+
(
τ2e⃗

)∗
= 0 and σ is analytic

as well.

7. Ising Model

7.1. Definition.
• The Ising model is a random assignment of ±1 spins to the vertices of a graph G with vertices V and

edges E, that interact via the edges.
• The probability of a spin configuration (σx)x∈V is proportional to e−βH(σ), whereH (σ) = −

∑
⟨ij⟩∈E σiσj

is the energy (the sum is over all unoriented edges) and β > 0 is the inverse temperature.
• In other words P {σ} = e−βH(σ)/Zβ , where Zβ =

∑
σ̃ e

−βH(σ̃) is the partition function.
• We can introduce an external magnetic field (add h

∑
i σi to βH (σ)), replace σiσj by general couplings

Jijσiσj , ..., but we will not do that (not that it is not interesting, but things become difficult...)
• In this class, we will only consider square-grid discretizations of planar domains as graphs, but other

graphs such has honeycomb domains, would work almost as well.

7.2. Motivation.
• The Ising model was introduced as a model of ferromagnetism: one would like to say that the matter of

small magnets that tend to align (in ferromagnetic material).
• Explaining clearly why this happens for a number of materials (such as iron) requires quantum mechanics

and is difficult.
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• Anyway, the model is a strong simplification of reality (spins only take two directions, we don’t have
magnetic field and this is not a quantum model).

• Nevertheless, there is a strong support for universality
• General postulate in statistical mechanics (can be justified, but subtle): the probability of a configuration

(in the so-called canonical ensemble) is proportional to its Boltzmann weight exp (−βH)
• A simple justification can be given by the fact that it is the stationary measure of a natural dynamics:

this is a natural way to do simulations.

7.3. Simulation.

• Metropolis algorithm/Glauber dynamics: start from an arbitrary configuration, and make random flips:
– Compute the energy of the current configuration Hσ.
– Pick a vertex x at random, consider the configuration ρ, obtained by flipping the spin x of σ, and

compute its energy Hρ

– If Hρ ≤ Hσ, replace σ by ρ. If Hρ > Hσ, replace σ by ρ with probability e−βHρ/e−βHσ (i.e. the
relative probabilities of ρ and σ)

– This defines a Markov chain on the state space S := {±1}G, with transition matrix PM = (PM )ρσ.
• Heat bath dynamics: start from an arbitrary configuration, and make random flips

– Compute the energy of the current configuration
– Pick a vertex x at random, and sample the spin σx at random by giving probability

P {σx} =
e−βH[σ+]

e−βH[σ+] + e−βH[σ−]
,

where σ+ and σ− denote the configuration σ, with the spin σx forced to be +1 and −1 respectively.
– This define a Markov chain on S, with transition matrix PH .

• Convergence: for any initial probability measure µ on S, we have that µPn
M → µIsing and µPn

H → µIsing

as n→ ∞.
• Markov chain statement: if P is the transition matrix of an irreducible aperiodic Markov chain (i.e. there

exists N such that
(
PN

)
σρ
> 0 for all σ, ρ ∈ S), then µPn → µstat as n→ ∞, where µstat is the unique

stationary measure, i.e. µstatP = µstat.
– We know 1 is an eigenvalue of P , and hence of PT ; we know the eigenvalues of P are ≤ 1 in modulus,

so are the ones of PT .
– Perron-Frobenius theorem: let Q be a matrix with positive entries. Then the largest eigenvalue (in

modulus) is real, simple and the corresponding eigenvector has positive entries.
– Apply P-F to Q = PN , and deduce that there is a unique positive eigenvector of eigenvalue 1 for Q,

but then it implies the result of PT (otherwise, there would be a contradiction).
• Sufficient (non-necessary criterion for measure invariance): detailed balance.

– A measure µ such that µσPσρ = µρPρσ for all σ, ρ ∈ S is said to satisfy detailed balance: ’flux’ of
probability from σ to ρ equals ’flux’ of probability of ρ to σ.

– Summing over σ, we get (µP )ρ = µρ, i.e. µ is invariant.
– Why is this satisfied for the Metropolis dynamics: ifHρ > Hρ, we have a flux 1

|V |
(
e−βHρ/e−βHσ

)
e−βHσ =

1
|V |e

−βHρ from σ to ρ, and a flux 1
|V |1 · e

−βHρ from ρ to σ, so both are equal (the other situation is
symmetric) – the 1

|V | is there because we pick the vertices uniformly.
– Why is this satisfied for the heat-bath dynamics: if σ−, σ+ are configurations coincinding except

at a vertex x, σ−
x = −1 and σ+

x = 1, we have a flux 1
|V |

e
−βH[σ−]e−βH[σ+]

e−βH[σ+]+e−βH[σ−] from σ− to σ+ and flux

1
|V |

e
−βH[σ+]e−βH[σ−]

e−βH[σ+]+e−βH[σ−] from σ+ to σ−, which are both equal.

7.4. Consequence: Monotonicity with Respect to Boundary Conditions.

• We can couple Ising models with arbitrary boundary conditions b, with + b.c. and with − b.c. such
that σ(−) ≤ σ(b) ≤ σ(+) (where σ ≤ ρ means σx ≤ ρx for all x ∈ G)

– Proof: we can couple the heat-bath dynamics σ(+)
n , σ(−)

n with + and − boundary conditions (we do
not flip the boundary spins), together with σ(b)

n such that at any time n ≥ 0, σ(−)
n ≤ σ

(b)
n ≤ σ

(+)
n

– Passing to n→ ∞, we get the result for the spins.



LATTICE MODELS (MA1, EPFL) 14

7.5. Low-temperature expansion.

• Consider the Ising model on the dual Ω∗
δ (i.e. we put spins on the faces), with + boundary conditions.

• For each spin configuration σ ∈ {±1}Ω
∗
δ , we put an edge of Ωδ for any pair of spins that are different: we

get a collection of closed loops on Ωδ and this is actually a bijection.
• For a collection of closed loops ω on Ωδ, the energy of the corresponding spin configuration equals

|ω| − (#edges (Ωδ)− |ω|) = 2 |ω| − (#edges (Ωδ)).
• We can hence rewrite the partition function of the Ising model as eβ#edges(Ωδ)

∑
ω∈C(Ωδ)

e−2β|ω|, where
C (Ωδ) is the set of collection of edges of Ωδ that form closed loops.

• The sign of a spin becomes the parity of the number of loops that surround it.

7.6. High-temperature expansion.

• Consider the Ising model on Ωδ, with no boundary conditions (free boundary conditions). Let us expand
the partition function of the Ising model∑

σ∈S
e−βH(σ) =

∑
σ∈S

∏
⟨xy⟩

eβσxσy

=
∑
σ∈S

∏
⟨xy⟩

(cosh (βσxσy) + sinh (βσxσy)) =
∑
σ∈S

∏
⟨xy⟩∈E

cosh (β) (1 + σxσy tanhβ)

= (cosh (β))
#E

∑
σ∈S

∑
E⊂E

(tanhβ)
E ∏

⟨xy⟩∈E

σxσy =(cosh (β))
#E

∑
E⊂E

(tanhβ)
E ∑

σ∈S

∏
⟨xy⟩∈E

σxσy

• We have that
∑

σ∈S
∏

⟨xy⟩∈E σxσy is zero, if ∂E ̸= ∅, where ∂E is the set of vertices that have odd degree
in E .

– If there is a vertex x ∈ Ωδ that appears in an odd number of edges the term will be 0: half of the
time, this term will appear with + sign, half of the time with − sign and hence terms will cancel.

– By Euler’s theorem for walks, E must be a collection of loops.
– Otherwise, we get 2#V terms equal to +1 each.

7.7. Boundary conditions and spin correlations.

• If we want to compute the spin correlations in the high-temperature extension with + boundary condi-
tions, we can do the same computation, except that we are not summing over the spins of ∂Ω.

• The condition for a contour to have a nonzero contribution is ∂E ⊂ ∂Ω: they are the contours we would
get from low-temperature expansion of Ising model on Ω∗ with free boundary conditions.

• Now, with free boundary conditions, if we want to compute Efree
Ωδ

[σaσb]∑
σ∈S σaσbe

−βH(σ)∑
σ∈S e

−βH(σ)
=

∑
E⊂E:∂E={a,b} (tanhβ)

E∑
E⊂E:∂E=∅ (tanhβ)

E
,

(the additional insertion of spins at a, b changes the parity rule at these vertices).
• If a, b are put on the boundary, it we get the low-temperature expansion of an Ising model with +

boundary conditions on [ab] and − boundary conditions on [ba].
• Now, if we compute E+

Ωδ
[σa], we get in the numerator a sum over diagrams E such that a ∈ ∂E and

E \ {a} ⊂ ∂Ω: a path from a to ∂Ω, plus arcs between points of ∂Ω.

7.8. Kramers-Wannier duality.

• Hence we get 2#V cosh (β)
#E ∑

E:loops (tanhβ)
E : the terms in the sum are the same as in the low-

temperature expansion of the Ising model on Ω∗
δ : so, we have exchanged

– The graph Ω∗
δ ↔ Ωδ and its dual

– The boundary conditions + ↔ free
– Boundary spin operators and boundary change operators
– The parameter e−2β ↔ tanhβ. Let’s call β∗ the parameter such that tanh (β∗) = e−2β , i.e.

sinh (β) sinh (β∗) = 1: if β increases, β∗ decreases.
• The critical point is the self-dual point β = β∗, i.e. when β = 1

2 ln
(√

2 + 1
)
.
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7.9. Peierls argument.
• Why can we choose a β > 0 sufficiently large so that E+

Ωδ
[σa] ≥ C > 0 uniformly with respect to δ.

• We look at loops surrounding a in low-temperature expansion. If we can show that the probability that
there is no loop surrounding a is > 1

2 , then we are done.
• The number of loops of length ℓ surrounding 0 is ≤ ℓ4ℓ (the loop must start at distance less than ℓ to

the left of a, say, and after that it is a path).
• The contributions of the configurations with a loop surrounding a is hence ≤

∑
ℓ ℓ4

ℓe−2βℓ, so choosing β
large enough, this will be less than 1/2.

7.10. Dual Peierls argument.
• Why can we choose β > 0 small enough so that E+

Ωδ
[σa] → 0?

• We can evaluate E+
Ωδ

[σa] using the high-temperature expansion and show that E+
Ωδ

[σa] ≤
∑

π:a→∂Ωδ
tanh#π (β),

where the sum is over all connected sets of edges connecting a and ∂Ωδ, such that each vertex v /∈ {a}∪∂Ωδ

has even degree
• Proof: we have

E+
Ωδ

[σa] =

∑
E⊂E:a∈∂E,∂E\{a}⊂∂Ωδ

tanh#E (β)∑
E⊂E:∂E⊂∂Ωδ

tanh#E (β)

=
∑

π:a→∂Ωδ

tanh#π (β)

∑
E⊂E\π:∂E⊂∂Ωδ\π tanh

#E (β)∑
E⊂E:∂E⊂∂Ωδ

tanh#E (β)

≤
∑

π:a→∂Ωδ

tanh#π (β)

• Now, we have # {π : a→ ∂Ωδ : |π| ≤ ℓ} ≤ 4ℓ for each connected graph with ℓ vertices, we can find a path
that passes through each edge exactly twice, and there at most 42ℓ paths of length 2ℓ

• So, if choose β small enough this goes to 0 as δ → 0.

7.11. Monotonicity with Respect to β [to be completed].
• Another monotonicity property for the Ising model is that of the magnetization with respect to the

temperature: if we consider the Ising model with + boundary conditions, then β 7→ E+
G;β [σx] is an

increasing function of β.
• The proof of this relies on the FKG inequality for the FK representation of the Ising model.
• The FK model consists of a collection of random clusters

8. Dimer Model

8.1. Generalities about the dimer model.
• We consider random dimer tiling (i.e. domino covering or perfect matching) of a given graph.
• This model exhibits an extremely rich behavior and many more ’physical’ models can be mapped to it.
• The dimer model is very well understood on bipartite (i.e. 2-colorable) planar graphs.
• This lecture is focused on the dimer model on square grid domains (subgraphs of Z2).

8.2. Number of domino tilings of a checkerboard: statement. Today, we want to prove a classical theorem
about dimer counting [Kas61, FiTe61]:

• The number of domino tilings of an p× q checkerboard is given by (unless pq is odd)√√√√ p∏
j=1

q∏
k=1

(
2 cos

(
πj

p+ 1

)
+ 2i cos

(
πk

q + 1

))
.

• The proof of this result will teach us interesting things about the dimer model.

8.3. Key steps of the proof: Two main parts:
• Write the number of domino tilings in terms of the determinant of a matrix.
• Diagonalize the matrix and take the product of the eigenvalues.
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8.4. Preliminary result: number of domino tilings as a permanent.
• Consider a square grid domainG with black vertices B = {b1, . . . , bn} and white vertices W = {w1, . . . , wn}

(we color the vertices in such a way that adjacent vertices are of different colors).
• (Reduced) adjacency matrix A of G: an n× n matrix (abw)b∈B,w∈W indexed by the black/white vertices

of G such that abw = 1 if b ∼ w and abw = 0 otherwise.
• Permanent of A: Per (A) =

∑
σ∈Sn

ab1wσ(1)
· · · abnwσ(n)

(like the determinant without the signature)
• In the sum

∑
σ∈Sn

ab1wσ(1)
· · · abnwσ(n)

, we get a nonzero term whenever b1 ∼ wσ(1), . . . , bn ∼ wσ(n), i.e.〈
b1wσ(1)

〉
, ...,

〈
bnwσ(n)

〉
is a dimer cover.

• So: Per (A) = #dimer covers (this works for any bipartite graph),
• Inconvenient: this not very useful. Unlike the determinant, the permanent is very hard to compute (NP

hard) and does not have good properties.

8.5. Next step: number of domino tilings as a determinant.
• Kasteleyn matrix K = (kbw)b∈B,w∈W for the square grid (can be generalized to other planar graphs):

– kbw = 1 if ⟨bw⟩ is a horizontal edge,
– kbw = i =

√
−1 if ⟨bw⟩ is a vertical edge and

– kbw = 0 otherwise.
• Result: |detK| = #dimer covers of G.

– Proof the result, we expand:

detK =
∑
σ∈Sn

ϵ (σ) kb1wσ(1)
· · · kbnwσ(n)

.

– As before, all nonzero terms correspond to a dimer tiling. To get the result, enough to show the
following lemma:

• Lemma: Let σ and σ̃ be two permutation corresponding to nonzero terms. Then

ϵ (σ) kb1wσ(1)
· · · kbnwσ(n)

= ϵ (σ̃) kb1wσ̃(1)
· · · kbnwσ̃(n)

.

– Let T and T̃ be the corresponding dimer tilers. If we superpose T and T̃ (i.e. take the XOR T ⊕T̃ ).
we get a collection of loops on G.

– We can move from T to T̃ by ’rotating’ the dimers of T along each loop.
– We can suppose that T ⊕ T̃ just consists of one loop bi1wi1 · · · bikwik and that

⟨bi1wi1⟩ , . . . , ⟨bikwik⟩ ∈ T and ⟨bi1wik⟩ , . . . , ⟨bi2wi1⟩ ∈ T̃ .

– We have that σ = (i1 . . . ik) ◦ σ̃ and ϵ (σ) = (−1)
k+1

ϵ (σ̃).
– To get the desired result

ϵ (σ) kb1wσ(1)
· · · kbnwσ(n)

= ϵ (σ̃) kb1wσ̃(1)
· · · kbnwσ̃(n)

one should check that

kb1wσ(1)
· · · kbnwσ(n)

= (−1)
k+1

kb1wσ̃(1)
· · · kbnwσ̃(n)

.
– Provided by the following lemma, using that the number of vertices inside the loop bi1wi1 · · · bikwik

is even (it can be tiled by dimers):
• Lemma: for any cycle b1w1 . . . bkwk, if m1 = kb1w1

bb2w2
. . . kbkwk

and m2 = kb2w1
kb3w2

. . . kb1wk
, we have

that m1 = (−1)
ℓ+k+1

m2, where ℓ is the number of vertices strictly inside the cycle.
– Proof: by induction (check that when one adds a face to the domain inside the cycle, the property

is maintained).

8.6. Computing the determinant.
• Now that we have |detK| = #dimer tilings, how to get the formula for the number of tilings of an p× q

checkerboard, with 2n vertices?

• Consider the (extended) Kasteleyn matrix: it is the 2n× 2n matrix K̃ =

(
0 K
KT 0

)
.

– K̃ is simply the matrix indexed by {b1, . . . , bn, w1, . . . , wn} (in that order) such that kvw = 1 if ⟨vw⟩
is a horizontal edge, kvw = i is ⟨vw⟩ is vertical and kvw = 0 otherwise.

– We have that
∣∣∣det K̃∣∣∣ = |detK|2 (easy to see from the expansion of the determinant)
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• It remains to show that:

det K̃ =

p∏
j=1

q∏
k=1

(
2 cos

(
πj

p+ 1

)
+ 2i cos

(
πk

q + 1

))
• How to show that?

– Let us find p× q independent eigenvectors of K̃ and compute their eigenvalues.
– Identify the vectors indexed by the vertices with functions defined on the checkerboard {1, . . . , p}×

{1, . . . , q}. We have(
K̃f

)
(x, y) = f (x+ 1, y) + f (x− 1, y) + i (f (x, y + 1) + f (x, y − 1)) ,

where f is set to 0 when taken outside of the range.
– For j ∈ {1, . . . , p} and k ∈ {1, . . . , q}, let z := e

iπj
p+1 and w := e

iπk
q+1 and consider the vector

f jk (x, y) :=
(
zx − z−x

) (
wy − w−y

)
= −4 sin

(
πjx

p+ 1

)
sin

(
πky

q + 1

)
,

notice that f jk is zero when x = 0, p+ 1 or y = 0, q + 1.
– We have that f jk(x,y) is an eigenvector of K̃, of eigenvalue λ = z + 1

z + i
(
w + 1

w

)
: one can see that(

K̃f
)
(x, y) = λf jk (x, y)

(we set f jk (x, y) = 0 if either x or y go outside of the checker board)
– Hence det K̃ is the product of the eigenvalues (the eigenvectors are independent, as they have distinct

eigenvalues).


