LATTICE MODEL EXAMS, JAN 2018

You can re-use without reproving them, results seen in class (unless it is written 'course question'). Do not get stuck on any problem: you certainly do not need to do everything to have the maximal grade. Justify what you write. Total 105 pt.
(1) [14 pt] Consider a simple random walk $\left(S_{n}^{k}\right)_{n \geq 0}$ on \mathbb{Z} starting at $k \in \mathbb{Z}$ that has probability p of jumping to the right and probability $q=1-p$ of jumping to the left $\left(\mathbb{P}\left\{S_{n+1}^{k}=S_{n}^{k}+1\right\}=p\right.$ and $\mathbb{P}\left\{S_{n+1}^{k}=S_{n}^{k}-1\right\}=q$), with $p, q \neq \frac{1}{2}$.
(a) $[4 \mathrm{pt}]$ (Course question) Show that the expected number of times the walk visits k is given by $\sum_{n=0}^{\infty} \mathbb{P}\left\{S_{n}^{k}=k\right\}$.
(b) [5 pt] Express the expected number of times the walk visits k as the integral of an explicit function, using Fourier analysis technique (as seen in class).
(c) [5 pt] Prove that for $a, b \in \mathbb{Z}$ with $a<b$, the probability that the walk starting from $a \leq k \leq b$ hits b before a is given by

$$
\frac{\left(\frac{q}{p}\right)^{k-a}-1}{\left(\frac{q}{p}\right)^{b-a}-1}
$$

(hint: uniqueness).
(2) [8 pt] Let $G=(V, E)$ be a connected graph and let $a, x, y \in V$ be vertices. Let L_{x} denote the trajectory of a loop-erased random walk in G (LERW in G) from x to a, and let $M_{x y}$ denote the trajectory of an LERW in G from y to a vertex visited by L_{x}. Let L_{y} denote the trajectory of an LERW in G from y to a, and let $M_{y x}$ denote the trajectory of an LERW in G from x to a vertex visited by L_{y}.

- Using the construction given by the theorem saying that Wilson's algorithm works as a way to sample a Uniform Spanning Tree, show that that the law of $L_{x} \cup M_{x y}$ and of $L_{y} \cup M_{y x}$ are the same.
(3) [28 pt] Consider the critical percolation on the hexagonal lattice \mathbb{C}_{δ} of mesh size δ, where we color the faces in black or white with probabilities $\frac{1}{2}, \frac{1}{2}$. (Reminder of class notation: for a domain Ω, we denote by Ω_{δ} a discretization of Ω, such as the largest connected component made of hexagonal faces of $\Omega \cap \mathbb{C}_{\delta}$)
(a) [7 pt] Consider $\triangleleft \subset \mathbb{C}$ the equilateral triangle of vertices $0, e^{\pi i / 6}, e^{-\pi i / 6}$, and let D be the image of \triangleleft by the map $z \mapsto z^{3}$. Consider critical percolation on Ω_{δ} and compute the limit, as $\delta \rightarrow 0$, of the probability that there is a path of black hexagons in D_{δ} that links the counterclockwise $\operatorname{arc}[i, 0]$ to the counterclockwise arc $\left[-\frac{i}{2},-i\right]$.
(b) $[7 \mathrm{pt}]$ (Course question) Let Ω be a Jordan domain (i.e. $\partial \Omega$ is a simple closed curve) and three points $a_{1}, a_{2}, a_{3} \in \partial \Omega$ in counterclockwise order. For $j=1,2,3$, let $H_{j}^{\delta}(z)=\mathbb{P}\left(Q_{j}(z)\right)$ where $Q_{j}^{\delta}(z)$ is the event that a_{j} and z are separated (in Ω_{δ}) from the two points a_{j+1}, a_{j+2} (indices modulo 3) by a black path. State and give a sketch of the proof of the combinatorial identity (often called discrete Cauchy-Riemann equations) which is used to show that the limit of the function $\Phi_{\delta}(z)=H_{1}^{\delta}(z)+e^{2 \pi i / 3} H_{2}^{\delta}(z)+e^{4 \pi i / 3} H_{3}^{\delta}(z)$ as $\delta \rightarrow 0$ is holomorphic.
(c) $[14 \mathrm{pt}]$ For $n \in \mathbb{N} \backslash\{0\}$, let R_{n} denote the rectangle $[0, n] \times[0,1]$ and let $\delta>0$ be a small fixed mesh size (say $\delta=0.001$).
(i) [7 pt] Show that the probability P_{n} that the vertical segments $\{0\} \times[0,1]$ and $\{n\} \times[0,1]$ are connected by a black path that stays inside R_{n} decays exponentially in n, i.e. that there exists $C>0$ such that $P_{n} \leq \exp (-C n)$.
(ii) [7 pt] Show that the probability Q_{n} that that the vertical segments $\{0\} \times[0,1]$ and $\{n\} \times[0,1]$ are connected by a black path in \mathbb{C}_{δ} (i.e. that is not forced to stay in R_{n}) only decays polynomially, i.e. $Q_{n} \geq \frac{c}{n^{\alpha}}$ for some $c, \alpha>0$.
(4) [30 pt] The Ising model with external magnetic field $h>0$ consists of ± 1 on a connected graph $G=(V, E)$ consists spins $\sigma_{x} \in\{ \pm 1\}$ for $x \in V$, where the probability of a spin configuration is equal to

$$
\mathbb{P}_{\beta, h}\{\sigma\}=\frac{\exp \left(\beta \sum_{\langle i, j\rangle \in E} \sigma_{i} \sigma_{j}+h \sum_{i \in V} \sigma_{i}\right)}{\sum_{\tilde{\sigma} \in\{ \pm 1\}^{V}} \exp \left(\beta \sum_{\langle i, j\rangle \in E} \tilde{\sigma}_{i} \tilde{\sigma}_{j}+h \sum_{i \in V} \tilde{\sigma}_{i}\right)}
$$

(a) [6 pt] Construct a Markov chain with local updates whose stationary measure is the measure $\mathbb{P}_{\beta, h}$.
(b) [5 pt] For a vertex $x \in V$, compute (and justify) the limit of $\mathbb{E}_{\beta, h}\left[\sigma_{x}\right]$ if we let $\beta \rightarrow+\infty$ and then $h \rightarrow+\infty$, i.e.

$$
\lim _{h \rightarrow+\infty} \lim _{\beta \rightarrow+\infty} \mathbb{E}_{\beta, h}\left[\sigma_{x}\right]
$$

(c) $[8 \mathrm{pt}]$ For disjoint vertices $x, y \in V$, what are the limits of $\mathbb{E}_{\beta, h}\left[\sigma_{x}\right]$ and of $\mathbb{E}_{\beta, h}\left[\sigma_{x} \sigma_{y}\right]$ as $\beta \rightarrow 0$ and $h>0$ is fixed?
(d) [11 pt] (A bit harder) On the graph with vertices $\{-3,-2,-1,0,1,2,3\}$ and edges between nearest neighbors ($v \sim w$ if and only if $|v-w|=1$), compute the limit

$$
\lim _{h \rightarrow+\infty} \lim _{\beta \rightarrow-\infty} \mathbb{E}_{\beta, h}\left[\sigma_{0}\right] .
$$

(5) $[14 \mathrm{pt}]$ Let $\Omega \subset \mathbb{C}$ be a Jordan domain containing the origin and let Ω_{δ} be a discretization of Ω by square grid $\delta \mathbb{Z}^{2}$ of mesh size δ, with boundary $\partial \Omega_{\delta}$.
Let $\mathcal{B}\left(\Omega_{\delta}\right)$ denote the set of edge collections $\omega \subset$ Edges $\left(\Omega_{\delta}\right)$ such each vertex of $\Omega_{\delta} \backslash \partial \Omega_{\delta}$ belongs to (i.e. is the endpoint of) an even number of edges of ω (there is no constraint for the vertices of $\partial \Omega_{\delta}$).
Let $\mathcal{B}_{0}\left(\Omega_{\delta}\right)$ denote the set of edge collections $\tilde{\omega} \subset \operatorname{Edges}\left(\Omega_{\delta}\right)$ such that each vertex of $\Omega_{\delta} \backslash$ ($\partial \Omega_{\delta} \cup\{0\}$) belongs to an even number of edges of $\tilde{\omega}$, such that 0 belongs to an odd number of edges of $\tilde{\omega}$ (and there is no constraint for the vertices of $\partial \Omega_{\delta}$).
(a) $[7 \mathrm{pt}]$ Explain why

$$
\frac{\sum_{\tilde{\omega} \in \mathcal{B}_{0}\left(\Omega_{\delta}\right)}(\tanh \beta)^{|\tilde{\omega}|}}{\sum_{\omega \in \mathcal{B}\left(\Omega_{\delta}\right)}(\tanh \beta)^{|\omega|}} \leq 1
$$

(b) [7pt] Show, using results from the course, that for any $\alpha \in] 0,1[$, there exists β so that we have

$$
\liminf _{\delta \rightarrow 0} \frac{\sum_{\tilde{\omega} \in \mathcal{B}_{0}\left(\Omega_{\delta}\right)}(\tanh \beta)^{|\tilde{\omega}|}}{\sum_{\omega \in \mathcal{B}\left(\Omega_{\delta}\right)}(\tanh \beta)^{|\omega|}} \geq \alpha
$$

(6) [9pt] (Course question). Let G be a graph with n black vertices $\left\{b_{1}, \ldots, b_{n}\right\}$ and n white vertices $\left\{w_{1}, \ldots, w_{n}\right\}$ such that black vertices are only adjacent to white vertices and vice versa . Let $A=\left(a_{i j}\right)$ be the $n \times n$ matrix with entries given by

$$
a_{i j}= \begin{cases}1 & \text { if } b_{i} \text { is adjacent to } w_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Show that the permanent of A is equal to the number of dimer tilings of G.

