Lattice Model Exams, Jan 2017.

- (1) Express the expected number of visits of the vertex (2, 0, 1, 7) of a simple random walk on \mathbb{Z}^4 starting from (0, 0, 0, 0) as a quadruple integral.
- (2) Write down a 6×6 matrix M such that $|\det M|$ equals the number of domino tilings of a 3×4 chessboard.
- (3) Let $R = [-1, 1] \times [0, 1]$ be a rectangular box. For $\delta = \frac{1}{n}$, with $n \in \mathbb{N}$, let $R_{\delta} := R \cap \delta \mathbb{Z}^2$ and for $(x, y) \in R_{\delta}$ let $P_{\delta}(x, y)$ be the probability that a simple random walk starting from (x, y) hits the top side of R_{δ} before any of the three other sides (left, bottom, right). Show that $P_{\delta}(x, y) \leq y$.
- (4) Let $R = [a, b] \times [c, d]$ be a rectangular box. Discretize R by a fine hexagonal lattice of mesh size $\delta > 0$ and consider the usual critical percolation (color independently the faces in black/white with probability $\frac{1}{2}/\frac{1}{2}$). Let A be the probability that there is a cluster linking the left side to the right side of the box. Let B be the probability that there is a black cluster touching all four sides of the rectangular box. Show that $\mathbb{P}(B) \ge A(1-A)$.
- (5) Let G be a finite connected graph with vertices labelled 1, 2, ..., n. Let N be the number of spanning trees of G. Let P be the probability that a loop-erased random walk from 1 to n passes through the vertices 1, 2, 3, ..., n 1, n in that order (assuming that it is possible to go through them in that order). Show that P = 1/N. Hint: Wilson's algorithm.
- (6) Show that a discrete harmonic function $f : \mathbb{Z}^2 \to \mathbb{R}$ that is bounded is constant. Hint: use the discrete Harnack inequality.
- (7) Using Wilson's algorithm, explain why for any finite connected graph G, the law of the edges visited by a loop-erased random walk from x to y is the same as the law of the edges visited by a loop-erased random walk from y to x. Hint: use the fact that Wilson's algorithm doesn't depend on the order in which we label the vertices of the graph.
- (8) Consider a discretization $\mathbb{D}_{\delta} = \mathbb{D} \cap \delta \mathbb{Z}^2$, and consider the Ising model with + boundary conditions at inverse temperature $\beta > 0$. Show that there exist $\beta > 0$ such that $\liminf_{\delta \to 0} \mathbb{E}^{\beta}_{\mathbb{D}_{\delta};+} \left[\sigma_{(0,0)} \right] \ge 0.99$. Harder: explain why there is a limit as $\delta \to 0$.
- (9) Consider the Ising model. Show that for any connected graph G (no boundary conditions) and any inverse temperature $\beta > 0$ and any vertices $x, y \in G$, we have $\mathbb{E}[\sigma_x \sigma_y] > 0$. Hint: high-temperature expansion.
- (10) Let Ω be a domain such that $\partial\Omega$ is a simple curve, with three points $a_1, a_2, a_3 \in \partial\Omega$ appearing in counterclockwise order. Let Ω_{δ} be the discretization of Ω by a hexagonal lattice of mesh size $\delta > 0$. Consider the usual critical percolation on the faces of Ω_{δ} . For $z \in \Omega$, let $H_1^{\delta}(z)$ be the probability that a_1, z are separated from a_2, a_3 by a black path, and let $H_2^{\delta}(z)$ and $H_3^{\delta}(z)$ denote the symmetrical events. We have seen in class that for any simple, smooth closed oriented curve γ , if we discretize it into an oriented closed path of edges of the hexagonal lattice γ_{δ} , we have (identifying points with their positions in the complex plane).

$$\lim_{\delta \to 0} \sum_{\vec{xy} \in \gamma_{\delta}} \frac{\left(H_1^{\delta} + H_2^{\delta} + H_3^{\delta}\right)(x) + \left(H_1^{\delta} + H_2^{\delta} + H_3^{\delta}\right)(y)}{2} \left(y - x\right) = 0$$

From this, explain why $\lim_{\delta \to 0} (H_1^{\delta} + H_2^{\delta} + H_3^{\delta})(z) = 1$ for any $z \in \Omega$, using the following hints: Morera \implies Holomorphicity

Cauchy-Riemann \implies Something about purely real holomorphic functions $RSW \implies$ Boundary Conditions

(11) Let $R = [a, b] \times [c, d]$ be a rectangular box. Discretize R by a fine hexagonal lattice of mesh size $\delta > 0$, and consider the usual critical percolation on it. Let E_{wwbwbb} and E_{wbwbwb} be the events that going from left to right in the box, we can find six disjoint paths of colors white-white-black-white-black-white-black going from left to right respectively. Show that $\mathbb{P}(E_{wwbwbb}) = \mathbb{P}(E_{wbwbwb})$. Hint: color flipping.