
LATTICE MODELS (MA1, EPFL)

1. Introduction

1.1. What this Class is About. The goal of this class is to give an overview of results about lattice models,
which should help you understand their structure, what are the kind of questions to ask, and what are the kind of
answers to find. This class is a math class: we prove theorems. However it is a bit different to most undergraduate
math classes in the sense that we don’t emphasize on definitions, and that we don’t try to construct a theory
step by step. Rather: we look at fairly concrete questions, study them, and solve them and only later try to infer
what is the general philosophy. The general picture is too deep to be studied axiomatically at this point. One of
the goals is to teach what are the key mathematical mechanisms to understand lattice models: how should one
analyze them, what should one look for, what techniques work.

1.2. Lattice Models. Lattice Models are at the heart of many fields of science:

• Statistical Mechanics: how macroscopic interactions emerges from microscopic physical model
• Quantum Field Theory: high-energy physics (e.g. Higgs boson)
• Biology: models of cells, etc.
• Ecology: models of growing plants
• Economics: models of interacting agents
• Image procesing: probabilistic models of images
• Machine learning: models of computation

1.3. Five Topics. There are mainly five topics that we will discuss in this class, each associated with one or
two non-trivial results:

• Simple Random Walk: Recurrence and Transience and PDEs
• Loop-Erased Random Walk and Uniform Spanning Tree: Wilson’s Theorem and the Matrix-Tree Theo-

rem
• Percolation: Phase Transition and Cardy’s Formula
• Ising Model: Graphical Representations, Sampling and Phase Transition
• Dimer Model: counting dominos

2. Simple Random Walk: Recurrence and Transience

2.1. What is a Simple Random Walk? We look here at discrete-time simple random walks (Xn)n�0 on a
locally finite graph G, that jump at integer times.

• Simple random walk on Z: we start at 0 and at each time, we jump either left or right, with probabilities
1
2 , independently of the past.

• Simple random walk on Z2: we start at 0, and at each time, we jump on one of the four neighbors, with
probabilities 1

4 , independently of the past.
• On a locally finite graph G: start at an origin vertex, and if Xn = v, then Xn+1 is one of the neighbors

of v, chosen with equal probability, independently of the past.

2.2. What are Basic Interesting Questions?

• How does the SRW look on the long term?
• How does a SRW trajectory look from far away?
• Does a SRW ever come back to the origin?
• Are there connections with other random objects?
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2.3. A Recent Result. At this point, it is worth mentioning a beautiful result of Lawler, Schramm and Werner
(we won’t prove it, but it is nice to know):

• Consider two independent SRW (Xn)n and
⇣
X̃n

⌘

n
on Z2 from (0, 0).

• Call Sn and S̃n the set of points visited by Xn and X̃n during the times k = 1, . . . , n (not including
k = 0).

• We have that Pn := P
n
Sn \ S̃n = ;

o
decays like n�5/8 as n ! 1 (i.e. logPn/ log

�
n�5/8

�
! 1).

2.4. Recurrence and Transience: a Theorem attributed to Polya.

• If we consider the simple random walk on Zd starting at the origin. If d = 1, 2 with probability 1 the
random walk will come back to the origin, whereas for d � 3 with probability > 0 it will not come back to
the origin.

• This result is fairly robust (it works on various graphs); in this class we will only look at the square
lattice case.

• The strategy of the proof is the following: reduce the question to one about the expected number of visits
of the origin, which is a Markov chain quantity and compute this quantity using Fourier analysis.

2.5. The Number of Visits to the Origin.

• Let Nd be the number of times that a SRW on Zd comes back to the origin, and let ⇡d be the probability
of ever coming back, i.e. ⇡d = P {Nd � 1}.

• We have the following facts: if ⇡d = 1 then Nd = 1 with probability 1 and if ⇡d < 1 then E [Nd] < 1
(and of course Nd < 1 with probability 1).

• Why? If ⇡d = 1, it is obvious: use the Markov property after the first time back to the origin, i.e. the
SRW after that time has the same law as a ‘new’ SRW, which will then again come back to the origin.

• The Markov property also leads to P {Nd � k} = (⇡d)
k hence if ⇡d < 1 we get

P1
k=1 P {Nd � k} = ⇡d

1�⇡d

.
• The following elementary lemma allows to conclude that E [Nd] =

⇡d
1�⇡d

< 1 if ⇡d < 1.

• Lemma: If X � 0 is a random integer then E [X] =
P1

j=1 P {X � j} (works also if both sides are +1).
• Proof of the lemma:

E [X] =
1X

k=1

kP {X = k} =
1X

k=1

1X

j=1

1{jk}P {X = k} =
1X

j=1

1X

k=j

P {X = k} =
1X

j=1

P {X � j} .

• As a consequence: proving Polya’s Theorem amounts to show that E [Nd] = 1 if d  2 and E [Nd] < 1
if d � 3.

• Since E [Nd] is decreasing with d (think of the projection on the first 3 coordinates), we just need to
prove the result in dimensions 2 and 3.

2.6. Markov Chain.

• For x, y 2 Zd and k � 0, let Qk (x, y) be the probability that a SRW starting from x arrives at y after
exactly k steps.

• We have the ’matrix-multiplication-like’ formula: Qk+1 (x, y) =
P

z2Zd Qk (x, z)Q1 (z, y).
• Indeed: we need to jump from x to some point z in k steps and then from z to y in one step, and both

probabilities are independent by the Markov property.
• Let us write Pk (x) for Qk (0, x). By translation invariance we have Qk (x, y) = Qk (0, y � x) and hence

Pk+1 (x) =
P

Pk (z)P1 (x� z).
• Let us write P for P1. By definition P (x) = 1

2d if x is one of the 2d neighbors of the origin (i.e.
(±1, 0, . . . , 0), (0,±1, . . . , 0), ... , (0, . . . 0,±1)) and P (x) = 0 otherwise.

• If for two functions f, g : Zd ! C, we denote by f ? g the (’convolution’) function defined by (f ? g) (x) =P
z f (z) g (x� z), then Pk = P ?k, where P ?k := P ? · · · ? P (k times).

• Since we have E [Nd] =
P1

k=1 Pk (0), what we need to compute is
P1

k=0 P
?k (0).

• We would prefer a sum of products (geometric series) to a sum of convolutions. How to transform
convolutions into products? Fourier analysis.
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2.7. Fourier Analysis in d = 1.

• A function f : Z ! C is nothing but a (bi-infinite) series. Let us assume that everything converges. [this
is the case in our case, the support of f is finite]

• If we consider a bi-infinite series f , we can form a corresponding Fourier series Ff (x) :=
P

k f (k) eikx ,
which is a 2⇡-periodic function.

• We have the classical inversion formula: from Ff (x), we can recover f (k) by f (k) = 1
2⇡

R ⇡
�⇡ Ff (x) e�ikxdx

(why?).
• If h = f ? g, for f, g : Z ! C, we have that F (h) = F (f)F (g).
• Proof: take

P
k f (k) eikx

P
` g (`) e

i`x , make a change of variable
P

k f (k) eikx
P

` g (`� k) ei(`�k)x and
re-arrange into

P
k (
P

` f (k) g (`� k)) eikx, which gives Fh (x).
• So for our problem (assuming things converge) we have F

�
P ?k

�
(x) = (F (P ))k (x) and hence

F
 1X

k=0

P ?k

!
(x) =

1

1� F (P )
(x)

• Since FP (x) = 1
2

�
eix + e�ix

�
= cos (x), we have F

�P1
k=0 P

?k
�
(x) = 1

1�cos(x) .
• So, if we want to compute E [Nd=1] =

P1
k=0 P

?k (0), we use the inversion formula and obtain
R ⇡
�⇡

1
1�cos(x)dx.

• Since cos (x) = 1� 1
2x

2 + · · · near x = 0, this integral is divergent, therefore the expectation is infinite.
• How to make this more rigorous: dampen the sum by adding a mass term

P1
k=0 �

kP ?k (0) for � < 1,
get

R ⇡
�⇡

1
1�� cos(x)dx, which is finite (and absolutely convergent) and then let � ! 1 and use monotone

convergence.

2.8. Fourier Analysis in d � 2.

• The analysis is pretty much the same.
• A function f : Zd ! C gives rise to a Fourier series Ff (x) of d variables defined by

P
k2Zd f (k) eik·x

(we wrote k · x := k1x1 + · · ·+ kdxd), and this function is periodic in each variable.
• The inversion formula is given by f (k) =

�
1
2⇡

�d R ⇡
�⇡ · · ·

R ⇡
�⇡ F (x) e�ik·xdx1 · · · dxd (same proof as before).

• For exactly the same reasons as before F (f ? g) = F (f)F (g).
• Hence for our problem, we have as before F

�P1
k=0 P

?k
�
(x) = 1

1�F(P ) (x).
• Now F (P ) (x) = 1

d

Pd
j=1 cos (xj) and hence we get (formally)

E [Nd] =

✓
1

2⇡

◆d Z ⇡

�⇡
· · ·
Z ⇡

�⇡

1

1� 1
d

P
cos (xj)

dx1 · · · dxd

• Is this integral divergence or convergent? Obviously, the only singularity in the hypercube [�⇡,⇡]d is at
x1 = · · · = xd = 0, so let’s see what happens there.

• Near (0, . . . , 0), we have 1
d

P
cos (xj) = 1� 1

2d

Pd
j=1 x

2
j+· · · and hence we should study the d-dimensional

integral of 1
x2 around the origin.

• In d = 2, we can do a polar change of variable, to get
R ✏
0

R 2⇡
0

1
r2 rdrd✓, which is infinite because

R ✏
0

1
rdr =

1, but ’barely infinite’.
• In d = 3, we can do a spherical change of variable to get

R ✏
0

R 2✓
0

R ⇡
2

�⇡
2

1
r2 r

2 cos'd'd✓dr, which is obviously
finite.

• To make things rigorous, we can use the exact same trick as in 1D.

2.9. Expected time to come back. In d = 1, the time to come back to 0, T , is finite almost surely, but
E[T ] = 1.

Two proofs: a combinatorial proof, one using discrete PDEs

2.9.1. Combinatorial proof. Consider a simple random walk (Sn)n starting from 0.
• E[T ] =

P
k�0 P[T > k] : we need to study how P[T > k] decays.

• First step of the RW: P[T > k] = 1
2P[T > k | S1 = 1] + 1

2P[T > k | S1 = �1]
• Symmetry of the RW wrt 0: P[T > k | S1 = 1] = P[T > k | S1 = �1]
• Invariance by shifting the time: P[T > k | S1 = 1] = P1[T > k � 1] where P1 means that we consider the

random walk starting from 1.
• Hence we need to study how P[T > k | S0 = 1] decays as k ! 1.
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• We compute P1[T  k] := P[T  k | S0 = 1] :
– P1[T  k] =

P
x2Z P1[T  k & Sk = x]

– If x  0: P1[T  k & Sk = x] = P1[Sk = x] since the RW has to cross the horizontal line y = 0. We
can use the translation invariance: P1[T  k & Sk = x] = P0[Sk = x� 1].

– If x > 0: we have:
⇤ By definition P1[T  k & Sk = x] = 1

2k#{walks of length k from 1 to x which cross y = 0}
⇤ If we have a walk x0 = 1, . . . , xk = x which crosses y = 0, we can consider the first time it

crosses y = 0, say n, and we can associate the walk x̃0 = �x0, . . . , x̃n = �xn, xn+1, . . . , xk.
This gives a bijection [the reflection principle]:

{walks of length k from 1 to x which cross y = 0} 7! {walks of length k from �1 to x }.

⇤ Hence

P1[T  k & Sk = x] =
1

2k
#{walks of length k from �1 to x } = P�1[Sk = x] = P0[Sk = x+ 1].

– P1[T  k] =
P

x2Z P1[T  k & Sk = x] is equal to
X

x0

P1[T  k & Sk = x] +
X

x>0

P1[T  k & Sk = x]

and thus, equal to:
X

x0

P0[Sk = x� 1] +
X

x>0

P0[Sk = x+ 1] = 1� P0[Sk = 0]� P0[Sk = 1].

• Note that P0[S2k = 1] = 0 since the random walk can not come back to 1 in an even number of steps.
• Hence P1[T > 2k] = P0[S2k = 0] ⇠ C/

p
k [Exercise sheet].

•
P

k�1
1p
k
= 1, so E[T ] �

P
2k�0 P[T > 2k + 1] =

P
2k�0 P1[T > 2k] = 1.

2.9.2. Proof using PDEs:
• We consider A = {1, . . . , N � 1} and @A = {0, N}, we compute Ex [T0,N ] where x 2 A [ @A and T0,N is

the first time n � 0 at which the simple random walk exits from A.
• The function f : x 7! Ex [T0,N ] satisfies a simple discrete PDE, with following bulk and boundary

conditions.
• Boundary conditions: f(0) = f(N) = 0.
• Bulk conditions: obtained by looking at the first step of the random walk: f(x) = 1

2f(x+1)+ 1
2f(x�1)+1

for x 2 A, which can be written as �f(x) = �1 where

�f(x) =
1

2
f(x+ 1) +

1

2
f(x� 1)� f(x).

• � is a discretization of the Laplacian [see next section]: in the continuous, we look for a function which
has a constant second derivative, and is 0 at 0 and at N . It must be a polynomial of degree 2 which
vanishes at 0 and N : g(x) = x(N � x) would be a candidate. Indeed, we can check that g satisties the
bulk and boundary conditions for x 2 A and x 2 @A.

• Unicity of the discrete PDE: there is a unique solution to
(
f(0) = f(N) = 0,

�f(x) = �1 for x 2 A,

If two functions satisfy this discrete PDE, their difference  is harmonic (i.e. � = 0) and is equal to
0 at 0 and N . Its maximal value is attained at x0, but since � (x0) = 0, it must be also attained on
the neighbours of x0, and so on, until we reach 0 or N : the maximal value of  is 0. Using the same
argument for � , we get that the minimal value of  is 0. Hence  = 0 and the two solutions are equal.

• Hence Ex [T0,N ] = x(N � x).
• Since the time T to return to 0 for the RW starting at 1 satisfies E1 [T ] > E1 [T0,N ] = N�1, by considering

the limit N ! 1 we get E1[T ] = 1.
• From this, using the usual argument [first step and symmetry wrt to y = 0] we get that the return time

to 0 for the RW starting at 0 has an infinite expectation.



LATTICE MODELS (MA1, EPFL) 5

2.10. An other proof of the recurrence for d = 1.

• We can use the same idea than in 2.9.2. to prove the fact that T < 1 in dimension 1.
• We consider A = {1, . . . , N � 1} and @A = {0, N}, and compute f(x) = Px[ST0,N = 0].
• The function f satisfies a simple discrete PDE, with bulk and boundary conditions.
• Boundary conditions: f(0) = 1, f(N) = 0
• Bulk conditions: with the same arguments �f(x) = 0
• We think about the continuous version of the PDE: we look for a function whose second derivative

vanishes. It is an affine function and because of the boundary conditions, it should be N�x
N . We can

verify easily that g(x) = N�x
N is a solution of the discrete PDE.

• Same argument as before: the solution of
8
><

>:

f(0) = 1

f(N) = 0

�f(x) = 0 for x 2 A

is unique.
• So Px[ST0,N = 0] = N�x

N .
• In particular P1 [T < 1] � P1[ST0,N = 0] = N�1

N which converges to 1 as N ! 1.
• From this, using the usual argument [first step and symmetry wrt to y = 0], we get that the return time

to 0 for the RW starting at 0 is almost surely finite.



1. Simple Random Walks and PDEs

1.1. Goal of this lecture.
• Generalize the connection we have seen between simple random walks and some Discrete Partial Dif-

ferential Equations, mainly the Laplace equation �f = 0, the Poisson equation �f = ⇢ and the heat

equation @tf = �f .

• To explain why the discrete solutions are approximations of the continuous equations.

• This connection is useful to

– study the continuous limit of random walks (in particular, calculate things on it),

– understand Laplace equation and the heat equation (in particular, obtain qualitative results easily).

1.2. The discrete Laplacian.
• Consider a finite connected graph G ⇢ Z

d
with boundary @G (the points which are not in G but which

are the neighbours of a point in G).

• Given a function f : G [ @G ! R, the Laplacian of f at x is defined for any x 2 G as

�f(x) =
1

2d

X

y⇠x

[f(y)� f(x)] .

• This defines an operator � : RG[@G ! R
G

which is not injective (by comparing the dimensions). In

particular, if you consider the constant functions, they are all satisfying �f = 0.
• If we have boundary conditions, i.e. F 2 R

@G
, we can define the Laplacian with boundary F : it is an

operator on the space of functions f : G ! R defined as

�F
f(x) =

1

2d

X

y⇠x

[f(y)� f(x)]

where we take the convention that f(y) = F (y) if y 2 @G.

• This defined an operator �F : RG ! R
G
. We can also see it naturally as an operator on the functions

on G [ @G which are equal to F on the boundary.

• Proposition: the operator �F
is a bijection.

• Indeed, since the source and target spaces have the same finite dimension, we only need to prove that it

is injective. If �F
f = �F

g, then we can see f � g as a function on G [ @G which is equal to 0 on the

boundary and such that �(f�g) = 0. As before, we can use the maximum principle : the maximum and

minimum of f � g has to be reached on the boundary. [consider x0 at which the maximum is reached,

if it is on the boundary it is fine, if not, we can use the mean value property of the function (i.e. the

value at x0 is the mean of the values at the neighbours) to see that the maximum is reached also on the

neighbours, so on and so forth, until we reach the boundary: thus the max is reached on the boundary].

Since the function is 0 on the boundary, f � g = 0 on G.

• Actually (exercise), the discrete Laplacian with 0 boundary conditions is negative definite and so is its

inverse.

• Thus we can invert the Laplacian with boundary conditions: for any function F on @G, any function ⇢

on G, there exists a unique function f on G such that

�F
f = ⇢.

1.3. Discrete Partial Differential Equations:
• The equation �F

f = ⇢ can be written as

(1.1)

(
�f(x) = ⇢ on G,

f(x) = F (x) on @G,

where F is a given function on @G and ⇢ a function on G.

• We want to give a probabilitistic interpretation of the solution f using Random Walks.

• The problem is linear: if we have the solutions f1 and f2 for the data (⇢1, F1) and (⇢1, F2), then ↵f1+�f2
is the unique solution for (↵⇢1 + �⇢2,↵F1 + �F2).

• Need to study the solution associated to (0, F ) and (⇢, 0): the discrete partial differential equations are

respectively the Laplace equation with Dirichlet boundary condition F , and the Poisson equation with

source term ⇢.

1
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1.3.1. The Laplace equation with Dirichlet boundary conditions.

• We consider the Laplace equation with Dirichlet boundary conditions:

(1.2)

(
�f(x) = 0 on G,

f(x) = F (x) on @G,

where F is a given function on @G.

• This kind of problem is particularly useful to extend a function on @G to G in a natural manner:

– for instance if f : @G ! R is the value of an eletric potential on the boundary of a grid G, then F

is the value of the potential inside the grid,

– another (related) example: if we put some temperature on the boundary of a grid and wait until

the temperature equilibrates inside, it will be given by F .

• We have seen that the problem is linear.

• We only need to understand the solution of

(1.3)

(
�f(x) = 0 on G,

f(x) = �x=y on @G,

where y is a point of the boundary.

• The solution of Equation (1.3) is denoted by H(x, y). More generaly, the discrete Harmonic Measure

H(x,B) is the solution of the Laplace Equation with boundary condition �x2B with B ⇢ @G. It is the

unique discrete harmonic function, i.e.

H (x,B) =
1

2d

X

y⇠x

H (y,B)

for x 2 G which is equal to 1 on B, 0 on @G \B.

• Any solution to the general Laplace equation is of the form

f(x) =
X

y2@G
H(x, y)F (y),

in particular H(x,B) =
P

y2B H(x, y).

1.3.2. The Poisson equation.

• We consider the Poisson equation:

(1.4)

(
�f(x) = ⇢(x) on G

f(x) = 0 on @G
,

where ⇢ is a given function on G.

• We have seen that the problem is linear.

• We only need to understand the solution of

(1.5)

(
�f(x) = ��x=y on G

f(x) = 0 on @G
,

where y is a point in G.

• The solution of Equation (1.5) is the Green Function, denoted by G(x, y).
• Any solution to the general Poisson equation is of the form

f(x) = �
X

y2@G
G(x, y)⇢(y).

• Consider the matrix of �0
(indices are the vertices of G, and we consider null boundary conditions), that

we denote also by �0
, and consider the matrix G = (G(x, y))x,y:

�0
G = �Id

i.e. the matrix G = �
�
�0

��1
.
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1.3.3. Random Walk Interpretation of the Harmonic Measure and of the Green Function.

• It remains to give a probabilistic interpretation of H(x, y) and G(x, y).
• We consider a simple RW X := (Xn)n on Z

d
which starts at x 2 G, T@G the first time X visits the

boundary.

• H(x, y) = Px [XT@G = y], i.e. the probability that the RW starting at x exits at y. More generally,

H(x,B) = Px [XT@G 2 B], i.e. the probability that the RW starting at x exits in B.

– Why ? Using the unicity of the solution of Equation (1.3), we only need to prove that Px [XT@G = y]
is solution of Equation (1.3). Considering the first step of the RW ! it is discrete harmonic. The

boundary condition is trivial.

• G(x, y) = E

hPT@G�1
n=0 �Xn=y

i
, i.e. the expected number of visits at y of the RW starting at x.

– Why ? Same argument.

• The general solution of Equation (1.1) is given by

f(x) = �E

"
T@G�1X

n=0

⇢(Xn)

#
+ E [F (XT@G)] .

1.4. Discrete Heat Equation.

1.4.1. Existence, Unicity and the Probabilistic Interpretation.

• We consider functions f : N⇥G ! R, and the discrete time differential @nf(n, x) = f(n+ 1, x)� f(x).
• We want to study the Discrete Heat Equation.

8
><

>:

@nf(n, x) = �f(n, x) on N⇥G,

f(0, x) = F (x) for x 2 G [ @G,

f(n, x) = G(n, x) for (n, x) 2 N
⇤ ⇥ @G.

• Solution exists and is unique: @nf = �f(x), i.e. f(n + 1, x) = f(x) + �f(x) gives us an algorithm to

define the function f at time n+1 if we know the function at time n. Since the initial condition is given

(i.e. f(0, ·)) we conclude.

• Probabilistic interpretation is f(n, x) = E [F (Xn) 1nT@G +G (n� T@G, XT@G) 1T@G<n] (proof in the Ex-

ercise Sheet n
o4)

• We focus on computing the solution to the Discrete Heat Equation in a special case (F = �x=x0 and

G = 0) in order to compute Px0 [Xn^T@G = y] (n ^ T@G is the minimum between the two values), when

X is a simple random walk on G = {1, . . . , N � 1} with boundary @G = {0, N}.

1.4.2. Solving the Discrete Heat Equation; Density of the RW killed at 0 and N :

• Consider X a simple random walk on G = {1, . . . , N � 1} with boundary @G = {0, N}, which starts at

x0 2 G.

• Theorem: for any y 2 G:

Px0 [Xn^T@G = y] =
2

N

N�1X

j=1

�j(x)


cos

✓
j⇡

N

◆�n
�j(y),

with �j(x) = sin
�⇡jx

N

�
.

• How to prove that:

– Consider f(n, y) = Px0 [Xn^T@G = y] for y 2 G and f(n, y) = 0 for y 2 @G.

– Show that f(n, y) satisfies the discrete Heat Equation.

– Show that the algorithm consists in multiplying the vector f(n, ·) at each step by a fixed symmetric

matrix Q, hence f(n, ·) = Q
n
f(0, ·).

– Diagonalize Q: find the eigenvalues �i and the eigenvectors �i.

– The eigenvectors are orthogonal.

– Decompose the initial density �y=x0 on the eigenvectors: �y=x0 =
P

ai�i. This is done by consid-

ering the scalar product (the e.v. are orthogonal)

h�y=x0 ,�ji =
DX

ai�i,�j

E
= aj k�jk2

and by computing h�y=x0 ,�ji and k�jk2.
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– We thus obtain:

Px0 [Xn^T@G = y] = Q
n
�y=x0(y) =

X
ai�

n
i �i(y).

• First step: f(n, y) satisfies the Heat Equation: indeed, the probability that X is at y at time n+1 is the

sum over the neighbours z of y of the probability that X is at z at time n and that it jumped from z to

y. We obtain f(n+ 1, y) = 1
2d

P
z⇠y f(n, z) or @nf(n, y) = �f(n, y).

• Second step: the discrete Heat Equation can be written as f(n+ 1, y) = 1
2d

P
z⇠y f(n, z). Hence we see

that we multiply (f(n, z))z2G by a matrix Q = �0 + Id in order to get (f(n+ 1, z))z2G: by induction

f(n, y) = (Qn
f(0, ·))y .

• Third step: we consider  ✓(x) = sin(✓x), in order to have the 0 boundary condition, sin(✓N) = 0 hence

✓N = k⇡ or ✓k = k⇡
N . Define �k(x) = sin(✓kx), and denote by = the imaginary part, then:

�k(x± 1) = =(ei✓k(x±1)) = =(ei✓kxe±ix) = sin(✓kx) cos(✓k)± cos(✓kx) sin(✓k)

hence �k(x+1)+�k(x�1) = 2 cos(✓k)�k(x). For each k, we have found an eigenvector �k(x) = sin(k⇡N x)
associated with the eigenvalue cos(k⇡N ).

• Forth step: the space of functions we consider is a N � 1 dimensional vector space (it is the space of

functions on {1, . . . , N�1}). We should have N�1 eigenvectors. In fact �k+N (·) = ��k(·), hence we can

consider only k 2 {0, . . . , N � 1}. Besides, �0(·) = 0, so we only consider �k where k 2 {1, . . . , N � 1}.
We have N � 1 eigenvectors. Their eigenvalues are distincts: since Q is symmetric, they are orthogonal.

[Use �t
k(Q�l) = (Q�k)

t �l]. So we have a basis of eigenvectors.

• Fifth step: we decompose �y=x0 =
P

ai�i. We only need to compute:

– h�y=x0 ,�ji: This is simply �j(x0).

– k�jk2: We need to compute

N�1X

x=1

�j(x)
2 =

N�1X

x=1

sin(
j⇡

N
x)2.

Using sin(✓)2 =
⇣

ei✓�e�i✓

2i

⌘2
= � 1

4

⇥
e
2i✓ + e

�2i✓ � 2
⇤
= 1

2 � 1
2 cos(2✓), we get

N�1X

x=1

�j(x)
2 =

N � 1

2
� 1

2

N�1X

y=1

cos(
2j⇡

N
y),

and since cos( 2j⇡N y) = <(ei 2j⇡
N y), we have

1

2

N�1X

y=1

cos(
2j⇡

N
y) =

1

2
<
 

N�1X

y=1

e
i 2j⇡

N y

!
.

Besides,

⇣PN�1
y=1 e

i 2j⇡
N y

⌘
(1� e

i 2j⇡
N y) = e

i 2j⇡
N y � 1 hence

PN�1
y=1 e

i 2j⇡
N y = �1 and thus

1

2

N�1X

y=1

cos(
2j⇡

N
y) = �1

2
.

This yields
PN�1

x=1 �j(x)2 = N
2 , or k�jk2 = N

2 .

• Hence the decomposition is given by

�y=x0 =
X

ai�i

where ai =
h�y=x0 ,�ji

k�jk2 = 2
N�j(x0).

• The solution is thus

Px0 [Xn^T@G = y] = (Qn
�·=x0)y =

2

N

N�1X

j=1

�j(x0)

✓
cos

✓
j⇡

N

◆◆n

�j(y).
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2. Convergence

2.1. Continuous Operators.
• Let us now consider the grid �Z

d
, i.e. the lattice rescaled by a factor � > 0, called the mesh size: the

distance between two adjacent vertices becomes �. What happens as � ! 0?
• Let us look at a smooth bounded domain G ⇢ R

d
and at its discretization G� := G \ �Zd

. Whenever

needed, identify points of G with the closest vertices of G�.

• We have that if F : G ! R is a C2
function then

1
�2�G�F (x) ! 1

2�F (x) for all x 2 G, where

� =
Pd

i=1
@2

@x2
i
. Why? Taylor expand F .

2.2. Convergence of Solutions.
• There are many questions and many answers of this type. Let us ask the most natural one: consider

a family of discrete approximations (G�)�>0 of a smooth domain of R
d

and fix pieces of the boundary

B� := @G� \ ⇤ for an open set ⇤ ⇢ R
d
.

• Statement: as � ! 0 the harmonic measure HG� (z,B�) converges to HG (z,B), where HG (·, B) is

continuous harmonic.

• There are many other similar statements, which can be proven with similar techniques.

2.3. Convergence Strategy.
• Interpolation: we first interpolate our functions to obtain continuous functions.

• Bounded values: we need to make sure that the functions do not “explode”: since they are [0, 1] valued,

that is fine.

• Regularity estimates: we need to make sure that the function is not ’too crazy’, i.e. ’it doesn’t wiggle

too much’.

• We can apply Arzelà-Ascoli precompactness results: for any subsequence, we can extract a convergent

subsubsequence. If we show that the limit is always the same for any subsubsequence, then it shows that

the sequence was infact converging towards this limit.

• Show that the limit of each converging subsequence satisfies enough conditions, so that it has to be

unique: show that it satisfies the continuous Laplace equation, with boundary condition 1 on B and 0
on @G \ B; i.e. it is smooth on G, radially continuous everywhere on @G except at the endpoints of B,

harmonic on G and takes the good boundary values.

– Harmonicity will come from the fact that the discrete functions are discrete harmonic.

– The boundary conditions is satisfied since the discrete functions satisfy such discrete boundary

conditions.

– A priori boundary estimates: make sure that as we approach B, the discrete functions get uniformly

close to 1, and similarly for @G \B.

• Uniqueness result: there is a unique continuous harmonic function HG(z,B) with the relevant boundary

conditions.

• Conclusion: the sequence HG� (z,B�) converge to the unique solution of the continuous Laplace equation,

i.e. to HG(z,B).

2.4. Regularity estimates.
• The idea is to use a discrete Harnack-type inequality to control the discrete partial derivatives of discrete

harmonic functions.

• For a function f : �Zd ! R, and k 2 {1, . . . , d}, we denote by @
k
� f the partial derivative defined by

@
k
� f (x) = f (x+ �ek)� f (x), where ek is the k-th vector of the canonical basis.

• The Harnack inequality : for a discrete harmonic function f defined on B� (x, r) :=
�
z 2 Z

d : |z � x|  r
 
,

there exists C > 0 such that for all k 2 {1 . . . , d},
��@k� f (x)

��  C max
z2B�(x,r)

|f (z)|

2.5. Boundary control.
• We already know our functions are between 0 and 1 and behave nicely inside; what we need to know is

that they don’t suddenly jump as we approach the boundary

• First, notice that they are going to jump when we go from B� to its complementary C� := @G�

• So, let us just look at B
r
� := {z 2 B� : d (z, C�) � r} and C

r
� := {z 2 C� : d (z,B�) � r} for some small

fixed r > 0 .
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• What we want to show (r is fixed): for any ✏ > 0, there exists ⇢ > 0 such that for all � > 0 and z 2 G�

with d (z,Br
� )  ⇢ then |HG� (z,B�)� 1|  ✏ and for all z 2 G� with d (z, C�)  ⇢ then |H� (z,B�)|  ✏.

• Let us prove this in 2D: the inequality is called the discrete Beurling estimate.

2.6. Discrete Beurling estimate in 2D.
• The discrete Beurling estimate is an explicit form of the control that we need to deal with the harmonic

measure H� near boundary points: it states that there exists constants C,↵ > 0 such that for all z’s

|H� (z,B�)|  C

✓
d (z,B�)

d (z, C�)

◆↵

• The strong discrete Beurling estimate (which we will not use in this class) gives that the optimal (i.e.

biggest) universal ↵ that can be chosen is ↵ = 1
2 .

2.7. General Case.
• In dimension greater than 2, there is no discrete Beurling estimate, so one must add conditions about

the boundary in order not to have strange behavior.

• If, for instance, the boundary is smooth, one can argue that the neighborhood of each boundary point

looks like a half-space and use Beurling-like arguments.

2.8. Discrete Harnack Inequality.
• Let us prove the 2D Harnack inequality: the result and the proof are essentially the same in all dimensions.

• Consider the discretization D� of a disk D = {|z| < r} by �Z
2

and identify the points of the plane with

complex numbers.

• Let us show the following inequality: for any discrete harmonic function f : D� ! R, we have

|f (i�)� f (�i�)|  Cst · � · max
z2@D�

|f (z)| .

• Similar arguments allow one to bound |f (�)� f (0)| and |f (i�)� f (0)| .
• The idea is to represent f (±i�) as E

⇥
f
�
X

±i�
⌧±

�⇤
for SRWs starting from ±i� where ⌧

±
are the hitting

times of @D� and compare the expectations.

• The idea to compare the expectations is to couple the SRWs
�
X

i�
n

�
n�0

and
�
X

�i�
n

�
n�0

in such a way

that most of the time, they hit @D� at the same place.

• The coupling is the following: sample
�
X

�i�
n

�
n�0

by taking the mirror image with respect to R of�
X

i�
n

�
n�0

until the first time & that X
i�
& 2 R, after which we set X

�i�
n = X

i�
n .

• It is easy to see that this is a coupling (i.e. that X
�i�
n is a SRW) and that for this coupling

|f (i�)� f (�i�)|  P
�
⌧
+
< &

 
max
z2@D�

|f (z)| .

• We can bound P {⌧+ < &}, i.e. the chance that X
i�
n hits @D� before R by Cst · �.

2.9. Uniqueness.
• Now take � ! 0 and then r ! 0, we get a function on G, which is smooth, has boundary value 1 on B

and boundary value 0 on @G \B; is it unique?

• As usual, by linearity we just need to argue that we have a continuous maximum principle. This is the

case since for harmonic functions we have the mean value property: f(z) = 1
2⇡

R 2⇡
0 f(z + re

i✓)d✓.

3. The continuous Laplace Equation

3.1. Holomorphic functions.
• A function f : C ! C is holomorphic at z if there exits f

0(z) 2 C such that for any h 2 C, f(z + h) '
f(z) + f

0(z)h+ o(|z|).
• We can look at complex-valued functions f : C ! C as functions f : R2 ! R

2
.

• For any ✏ 2 R, f(z + ✏) ' f(z) + ✏f
0(z) and thus @xf = f

0(z). Also f(z + ✏i) ' f(z) + i✏f
0(z) and thus

@yf = if
0(z) = i@xf .

• Thus (@x + i@y) f = 0, or if we define @z = (@x + i@y), the holomorphicity of f means that

@zf = 0.
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• If we write @yf = i@xf using the real and imaginary parts of f , we get the Riemann-Cauchy equations:
(
@x<(f) = @y=(f),
@y<(f) = �@x=(f).

• Holomorphic functions are harmonic (the real and imaginary parts are harmonic):

– First point of view: � = @z@z where @z = @x � i@y, thus since @zf = 0, we have �f = 0.
– Second point of view: we show �<(f) = 0, similar proof holds for =(f). Using Riemann-Cauchy

equations,

@x@x<(f) = @x@y=(f) = @y@x=(f) = �@y@y<(f),
hence �<(f) = 0.

• So we have a way to construct harmonic functions: just consider the real part of holomorphic functions.

• The link between holomorphic functions and harmonic functions is stronger in fact: any harmonic function

on a simply connected domain is the real part of a holomorphic function (see the Exercise Sheet 6).
• If f : ⌦ ! ⌦̃ is holomorphic and g : ⌦̃ ! R is harmonic, then g � f : ⌦ ! R is harmonic. (Simple

computation)

3.2. Poisson Kernel.
• The goal of the section is to understand the Poisson kernel formula: if g is continuous on the unit circle

@D, where D :=
�
(x, y) 2 R

2 : x2 + y
2  1

 
, then the unique solution of the continuous Laplace equation

is given by

f(z) =
1

2⇡

Z ⇡

�⇡
<
✓
1 + ze

�i✓

1� ze�i✓

◆
g(ei✓)d✓.

• How can we obtain this formula ?

• As for the discrete, we decompose in easier sub-problems: we want to find a function f which is harmonic

and which is equal to 0 everywhere except in e
i✓

where it should be a “Dirac”.

• Such function should be the real part of an holomorphic function  : D ! C such that < (ei✓) = 0 for

any ✓, except in 1 where something special should happens.

• The function  sends then @D on the line x = 0: we are thus looking for an holomorphic function  

which maps D on H<�0 = {z 2 C,<(z) � 0} , and which maps 1 on ±1. It is given by

 (z) = C.
z + 1

1� z

where C 2 R.

• We define P1(z) = C.<
⇣

z+1
1�z

⌘
. If we want to solve the similar problem but where the “Dirac” is at e

i✓
,

we get P✓(z) = P1(ze�i✓).
• By linear supperposition of the solutions, we get that the solution of the continuous Laplace equation

where the boundary condition is given by g is

f(z) =

Z ⇡

�⇡
P✓(z)g(✓)d✓.

It remains to know which constant to take (i.e. what is C).

• When g = 1, the solution is constant equal to 1. This allows to fix the constant and we obtain

f(z) =
1

2⇡

Z ⇡

�⇡
<
✓
1 + ze

�i✓

1� ze�i✓

◆
g(ei✓)d✓.

3.3. The scaling limit of the exit probability of a RW.
• Consider the unit disk D :=

�
(x, y) 2 R

2 : x2 + y
2  1

 
and discretize it by D� with mesh � ! 0.

• What is the chance that a SRW from (x, y) exits D� through the upper-right quadrant as � ! 0?
• We know that this probability is given by the discrete harmonic measure H�((x, y), I) where I is the

upper-right quadrant.

• We know that lim�!0 H� ((x, y), I) is the continuous harmonic measure H((x, y), I). And by the last

section, we have an explicit formula for it.

• Hence

lim
�!0

P
D�
z [Xn exits D� through the upper-right quadrant] =

1

2⇡

Z ⇡
4

0
<
✓
1 + ze

�i✓

1� ze�i✓

◆
d✓.



LATTICE MODELS (MA1, EPFL)

1. Uniform Spanning Tree

We consider a finite connected graph G, with no double edge (i.e. two vertices are connected by zero or one

edge), and no self-edge.

1.1. Definitions.

• A spanning tree T of a connected graph G is a subgraph of G that is a tree (connected, no cycle) and

that contains all the vertices of G. The set of spanning trees of G is denoted by TG.
• There is a finite number of spanning trees of a finite graph. We can consider the uniform measure

P[T ] = 1
#TG

.
– Can we count the number of spanning trees?

– Can we simulate a uniform spanning tree?

1.2. Counting Spanning Trees: the matrix-tree theorem / Kirchhoff ’s theorem.

• The number of spanning trees is related to the Laplacian matrix :

Lv,v = deg v,

Lv,w = �1,

for v ⇠ w and v 6= w.

• The Laplacian matrix is related to the matrix of the Laplacian �:

�
✓
�v=w

1

deg v

◆

v,w

L = �.

• Kirchhoff’s theorem (Proof in Exercise Sheet 5): The number of covering trees of G is given by

#TG =
��detLi,j

�� = (�1)i,jLi,j ,

where Li,j
is the Laplacian matrix where we have removed the ith line and jth column.

• If 0 = �1 < �2  �3 . . .  �n are the eigenvalues of L,

#TG =
1

n

nY

i=2

�i.

which is obtained by considering the linear term of the characteristic polynomial PL(X) of L in two

different ways:

– PL(X) = X
Qn

i=2(X � �i): the linear tern is (�1)n�1
Qn

i=2 �i.

– PL(X) = det(X.Id� L): the linear term is (�1)n�1
Pn

i=1 det(L
i,i) = (�1)n�1n#TG.

• The Kirchhoff’s theorem can be generalized to the case where vertices can be connected by more than one

edge: one has to define deg(v) as the number of edges which contain v, and Lv,w = �#{edges v $ w}.

1.3. Sampling Uniform Spanning Trees via counting.

• Sampling each edge one by one recursively, by computing the probability that a given edge is selected in

the spanning tree knowing that we have already decided that some other edges are in the tree or not.

• Enumerate the edges of G: e1, . . . , en.

• The probability that e1 2 T : P [e1 2 T ] = #{T |e2T}
#TG

.
• Bijections:

– The set of spanning trees which contain e is in bijection with the set of spanning trees of the graph

G_{e}
obtained by collapsing the edge e and glue together the two endpoints of e.

– The set of spanning trees which do not contain e is in bijection with the set of spanning trees of the

graph G \ {e} obtained by erasing the edge e in the graph G.

• Thus, P [e1 2 T ] = #{T |e2T}
#TG

=
detL1,1

G_{e1}

detL1,1
G

can be computed: we can randomly decide if e1 will be in the

spanning uniform tree.

1
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• Once we have decide if e1 will be in the uniform spanning tree, we have to decide if e2 is in or not: if T
is a uniform spanning tree,

– the law of T knowing that e1 2 T is the law of a uniform spanning tree on G_{e}
.

– the law of T knowing that e2 /2 T is the law of a uniform spanning tree on G \ {e}.
• We decide that e2 2 T with the following probabilities:

– if e1 2 T : P [e2 2 T | e1 2 T ] =
detL1,1

G_{e1,e2}

detL1,1

G_{e1}

– if e1 /2 T : P [e2 2 T | e1 /2 T ] =
detL1,1

(G\{e1})_{e2}

detL1,1
G\{e1}

• and so on and so forth.

• Trivially works: we are sampling a uniform spanning tree, but very costly way to sample it !

1.4. Sampling Uniform Tree using Random Walks: the Aldous-Broder algorithm.

• The set of edges of the tree you are going to built is initially empy ET = {}.
• Choose an initial vertex X0 and launch a simple random walk on G (i.e. jump uniformly to the neighbours

independently from the past).

• While all vertices have not been visited:

– if Xn is a vertex which has not been yet visited, remember the edge {Xn�1, Xn}:
ET = ET [ {{Xn�1, Xn}}

– if Xn is a vertex which has already been visited, do not record the edge.

• Yields a better algorithm to sample uniform spanning trees. We will not prove that the algorithm

yields a uniform spanning tree, we will consider instead the Wilson’s Algorithm, based on the notion of

Loop-Erased Random Walk.

1.5. Sampling Uniform Tree using Loop-Erased Random Walks: the Wilson’s algorithm.

1.5.1. Loop-Erased Random Walk.
• A loop-erased random walk (LERW) is built by applying a loop-erasure procedure to a simple random

walk.

• The so-called chronological loop-erasure procedure is as follows: whenever the simple random walk closes

a loop, i.e. arrives at time n to a vertex where it has come before at time tn, the list of points visited

between times tn and n is erased.

1.5.2. Wilson’s Algorithm.
• Wilson’s algorithm is a very efficient way to uniformly sample a spanning tree by adding branches using

LERW.

• Consider an enumeration of the vertices x0, . . . , xn where x0 will be the root of the tree.

• The idea is to choose a root x0 and to construct a growing family of trees {x0} = T0 ⇢ T1 ⇢ · · · ⇢ Tk

such that Ti+1 \ Ti is a LERW from an arbitrary vertex of xi 2 G \ Ti stopped upon hitting Ti and

stopping when we get a spanning tree.

• Obviously, we get a spanning tree with this method. The question is: why is the measure uniform?

• The idea is to construct a probability space made of ’stacks of arrows’ that generates the tree and the

loops that were erased in the LERW

• This will show that the measure is uniform and the tree is actually independent of the choices of x0, . . . , xr.

1.5.3. Stack of Arrows.
• To each vertex x 2 G \ {x0}, associate an infinite stack of random ’arrows’ each of which points to a

neighbor of x, uniformly, independently of each other.

• These arrows can be used to sample a SRW from any vertex x 2 G \ {x0}, stopped upon hitting x0:

when we are at a vertex, jump to the neighbor pointed by the arrow at the top of the stack and remove

this arrow.

• If we look at the arrows at the top of the stacks, they form a number of cycles, plus a tree pointing to

the root x0.

• We can take the arrows of a cycle at the top of the stack and remove it: we call this a ’cycle removal’

procedure. The Wilson algorithm is a way to explore the stack of arrows in order to remove cycles.

• If we keep removing cycles until we don’t have any (this will happen with probability one), we get a tree.
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• What we will show: the order in which we remove the cycles is irrelevant and the tree that we get is

sampled with uniform probability.

1.5.4. Cycle Lemma.
• Lemma : if two people have two different ways to remove cycles in the stack of arrows, they end up

removing exactly the same cycles.

• Let C1, . . . , Cn be a (ordered) sequence of cycles which can be popped in order to obtain a tree. Let

D1, . . . , Dm be an other sequence which can be popped in order to obtain a tree. We show by induction

that n = m, and there exists a permutation � such that Ci = D�(i).

• If n = 0, that is trivial.

• If n > 0, then at least one of the cycles D1, . . . , Dm should intersect C1 (if not, C1 would still be there

after removing D1, . . . , Dm and thus we would not obtain a tree after removing them). Consider the

minimal i 2 {1, . . . ,m} such that Di intersects C1.

• Consider v a vertex in the intersection Di\C1: because of the minimality of the index i, the arrow in Di

and C1 going from v must be the same (because they are taking the first arrow from the stack associated

to v).
• But then the next vertex (following the arrow) is also the same for C1 and Di, and so on and so forth.

So we get C1 = Di, in particular Di was on the top of the stack of arrows.

• Thus, instead of removing D1, . . . , Dm, one could have removed Di, D1, . . . , Di�1, Di+1, . . . , Dm. And

since C1 = Di, after we remove Di or C1, we have a new stack of arrows, and removing C2, . . . , Cn�1 or

D1, . . . , Di�1, Di+1, . . . , Dm both allow to obtain a tree. By induction n � 1 = m � 1 and the Dis are

the same cycles than the Cis up to a permutation.

1.5.5. Proof of Wilson’s algorithm.
• Once we understand the picture (the stack of arrows yields a collection of loops and a tree just below),

it is fairly easy to show that the tree that we get is uniform.

• Let us look at a possible ‘history’, i.e. a set of loops sitting on top of a tree. It has the same probability

as an alternate history with the same set of loops on top of any different tree.

• To compute the probability of a tree, we sum over all the possible ’histories’ leading to it: we deduce

from the above remark that each tree has the same probability.
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1. Percolation: Cardy’s Formula For Crossing Probabilities

1.1. Different kind of percolations.

• We consider a lattice graph (e.g. Z2, triangular lattice, honeycomb lattice, ... ), with sets of vertices V,
edges E and faces F .

• For S = V, E or F we can consider a model of percolation associated with it. Each element s 2 S will be
either “open” or “closed” (or 1/0 or white/black) independently from the other s

0
2 S. Let p 2 [0, 1] be

the probability of s 2 S is open: we are considering a family of independent Bernoulli random variables
(Xs)s2S of parameter p.

• If S = V, this is a site percolation, if S = E , this is an edge percolation, if S = F , this is a face percolation.
• Using the dual lattice, face percolation is equivalent to site percolation on the dual lattice (e.g. face

percolation on the hexagonal lattice is the same as site percolation on the triangular lattice). So there
exists essentially two kinds of percolations: edge and face percolations. In the exercises, you will study
the edge percolation mainly on Z2, in the lesson we will study the face percolation on the honeycomb
lattice.

1.2. Natural questions: phase transition and crossing probabilities.

• Percolation is originally a model of a porous medium: we can think that black hexagons are filled with
matter, while white ones are empty.

• It is natural to ask about connectivity questions for that medium:
– is there a path made of white faces connecting the origin to infinity ?
– is there an infinite connected component of white faces ?
– is there a path made of white hexagons joining two sets ?

• Phase transition: we can consider O(p) = Pp [9 an infinite connected component of white face] and ✓(p) =
Pp[0 ! 1]. We have:

– O(p) and ✓(p) are increasing in p (one can couple the percolations with any parameter by considering
a family of independent uniform [0, 1] random variables (Uf )f2F : a face percolation with parameter
p is obtained by considering (Uf  p)f2F . In that case, if a face is open/white/1 for p, then it
remains open/white/1 for p

0
� p)

– O(0) = 0 = ✓(0) and O(1) = 1 = ✓(1).
– O(p) = 0 or O(p) = 1 (Kolmogorov’s zero-one law since one can enumerate the faces and the event

that there exists an infinite connected component of white face does not depend on the values of
any first values Xf1 , . . . , Xfn).

– ✓(p) > 0 if and only if O(p) = 1. (see Exercise 2, Sheet 8)
– ✓(p) is right continuous. (see Exercise 2, Sheet 8)
– Using the above properties, we see that there exists pc such that:

⇤ O(p) = 0 for p  pc, O(p) = 1 for p > pc,
⇤ ✓(p) = 0 for p  pc, ✓(p) > 0 for p > pc.

– This is the critical probability of the percolation: pc depends on the type of percolation (edge/face
percolation and the kind lattice): for example, pc = 1

2 for the edge percolation on Z2, pc = 1
2 for

the face percolation on the honeycomb lattice [Kesten1980], but pc = 1� 2 sin( ⇡
18 ) ⇠ 0.6527 for the

edge percolation on the hexagonal lattice.
• If we are at the critical probability, we can consider the “continuous” limit, i.e. we consider the percolation

on the lattice with mesh �, and ask ourselves if we can compute the probability, as � ! 0, that there
exists a path made of white hexagons joining two sets. For example, we fix a rectangle [0, 1]⇥ [0, N ], we
discretize it using a hexagonal lattice, and we ask ourselves what is

lim
�!0

P 1
2
[{0}⇥ [0, 1] !w {1}⇥ [0, 1]]

where !w means that there exists a white path connecting the two sets (which are the lower and upper
part of the rectangle). The answer is given by Cardy’s formula.

1
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• From now on, we consider the critical face percolation on the honeycomb lattice (i.e. p = 1
2 ) where the

edges are parallel to 1, ⌧ = e
2⇡i/3

, ⌧
2 = e

�2i⇡
3 .

1.3. Cardy’s formula.

• Consider a quad (⌦, a1, a2, a3, a4), i.e. ⌦ is a Jordan domain (i.e. @⌦ is a closed simple curve) and four
points a1, a2, a3, a4 2 @⌦ in counterclockwise (or c.c.w.) order, a discretization (⌦�)�>0 by a honeycomb
domain of mesh size �, and identify each point a1, a2, a3, a4 with the closest boundary vertex.

• Crossing probabilities: what is the chance P⌦� {[a1a2] !w [a3a4]} that there is a path of white hexagons
linking [a1a2] to [a3a4] ?

• Two main properties of the limiting crossing probabilities as � ! 0:
– Conformal invariance of crossing probabilities (Smirnov, 2001): if (⌦, a1, a2, a3, a4) and

⇣
⌦̃, ã1, ã2, ã3, ã4

⌘

are conformally equivalent (i.e. there exists a conformal map ⌦ ! ⌦̃ with a1, a2, a3, a4 7! ã1, ã2, ã3, ã4),
then

lim
�!0

P⌦� {[a1a2] !w [a3a4]} = lim
�!0

P⌦̃�
{[ã1ã2] !w [ã3ã4]} .

– Explicit formula (Cardy’s formula) for the equilateral triangle: if � is an equilateral triangle with
vertices a, b, c, then

lim
�!0

P�� ([ab] ! [cd]) =
|c� d|

|c� a|
.

• How can we compute the limiting crossing probabilities for any quad (⌦, a1, a2, a3, a4) ? Using Riemann’s
mapping theorem.

1.4. Riemann’s mapping theorem.

• Let ⌦ and ⌦̃ be two Jordan domains (i.e. @⌦ and @⌦̃ are closed simple curves), and let a1, a2, a3 2 @⌦
and ã1, ã2, ã3 2 @⌦̃ be distinct boundary points, in c.c.w. order.

• There exists a unique conformal mapping (i.e. holomorphic + bijective) ' : ⌦ ! ⌦̃ with a1, a2, a3 7!

ã1, ã2, ã3.
• Remark: this statement can be generalized to arbitrary simply-connected domains, provided the boundary

points are replaced by prime ends.

1.5. Cardy’s formula and main statement.

• For a Jordan domain (⌦, a1, a2, a3), there exists a unique conformal mapping ' from ⌦ to the equilateral
triangle 4 with vertices 1,±

p
3
3 i, with a1, a2, a3 7! a := 1, b :=

p
3
3 i, c := �

p
3
3 i.

• Using the two main properties of the limiting crossing probabilities and Riemann’s mapping theorem, we
obtain Carleson’s formulation of Cardy’s formula [Smirnov 2001]:

lim
�!0

P⌦� {[a1a2] !w [a3a4]} = <e (' (a4))

(apply the conformal invariance, Cardy’s formula for the equilateral triangle �, and Thalès theorem.)
• Carleson’s formulation of the limiting crossing probabilities is equivalent to the two main properties of

the limiting crossing probabilities given above:
– We obtained it from the two main properties.
– If we assume instead Carleson’s formulation, Cardy’s formula is a direct consequence, and by te

uniqueness of the conformal mapping ' : ⌦ ! �, we obtain conformal invariance. Indeed, if
(⌦, a1, a2, a3, a4) and

⇣
⌦̃, ã1, ã2, ã3, ã4

⌘
are conformally equivalent (i.e. there exists a conformal

map � : ⌦ ! ⌦̃ with a1, a2, a3, a4 7! ã1, ã2, ã3, ã4), and if '̃ is the unique conformal map ⌦̃ ! �
which sends ã1, ã2, ã3 on a, b and c, then '̃ � � is the unique conformal map ⌦ ! � which sends
a1, a2, a3 on a, b and c. Thus:

lim
�!0

P⌦� {[a1a2] !w [a3a4]} = <e('̃ � �(a4)) = <e('̃(ã4)) = lim
�!0

P⌦̃�
{[ã1ã2] !w [ã3ã4]}

which proves the conformal invariance.
• To prove Cardy’s formula, we are going to use the same strategy that we used in order to show the

convergence of the discrete harmonic measure to the continuous harmonic measure. Yet, there are two
problems:

– Cardy’s formula is about the convergence of functions on the boundary [a3, a1],
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– <(') can be characterized by the fact that it is the real part of the unique conformal map ⌦ ! �
which sends a1, b1, c1 on a, b, c, but can we not use directly ' ?

• For the first point, we extend the observable P⌦� {[a1a2] !w [a3z]} from the boundary z 2 [a3, a1] to
the bulk z 2 ⌦. In order to do so, we consider A1 := [a2a3] and

H
1
� (z) := P⌦� {a1 and z are separated from A1 by a white path} .

that we write also as
H

1
� (z) := P⌦� {{a1, z} ||w A1} .

Note that when z 2 [a3, a1] then H
1
� (z) = P⌦� {[a1a2] !w [a3z]}.

• For the second point, we consider now

H
µ
� (z) := P⌦� [Q

µ(z)]

where
Q

µ(z) := {{aµ, z} ||w Aµ}

for µ 2 {1, 2, 3}, where A1 := [a2a3], A2 := [a3a1], and A3 := [a1a2], and we set

'� := H
1
� +

p
3

3
iH

2
� �

p
3

3
iH

3
� .

• Theorem: When � ! 0, the function '� converges to the unique conformal map ' : ⌦ ! � which sends
a1, b1, c1 on a, b, c:

'� �!
�!0

'.

• Since P⌦� ({a1, a4} ||w A1) = H
1
� (a4) = <('�(a4)), we get Carleson’s formulation of Cardy’s formula:

lim�!0 P⌦� ({a1, a4} ||w A1) = <('(a4)).

1.6. Strategy of the proof.

• Precompactness: we show that ('�)�>0 is uniformly equicontinuous on ⌦ by showing that it is uniformly
Hölder continuous. Since they are uniformly bounded, we can apply the Arzelà-Ascoli theorem: from
any subsequence, we can extract a sub-subsequence that converges in uniform norm. If we show that
the limit does not depend on the sub-subsequence considered and is equal to ', we will have shown that
'� ! '. Let ' be a subsequential scaling limit, i.e. '�n !n!1 '.

• Boundary conditions: we show ' is a homeomorphism @⌦ ! @4 with a1, a2, a3 7! 1,
p
3
3 i,�

p
3
3 i.

• Analyticity: we show ' is analytic. This will follow from approximate discrete Cauchy-Riemann relations
and Morera’s criterion.

• Bijection: To show that ' : ⌦ ! 4 is a bijection inside ⌦, we use the argument principle, take w 2 C:
we want to show that ' (z)� w has a single zero in ⌦ iff w 2 4:

# {zeros of ' (z)� w} =
1

2⇡i

˛
@⌦

'
0 (z)

' (z)� w
dz =

1

2⇡i

˛
@4

1

⇣ � w
d⇣ = 14 (w) .

1.7. A priori estimates. Like for the random walks, we first need some simple a priori estimates for the
precompactness part.

1.7.1. Symmetry, Self-Duality.

• Consider the square S = [0, 1]⇥ [0, i], and discretize S by a symmetric honeycomb domain S�, with � > 0
small.

• We have lim�!0 PS� {[0, i] !w [1, 1 + i]} = 1
2 : either we have a horizontal white path or a vertical black

path crossing, but since p = 1/2, both events have the same probability.

1.7.2. FKG inequality. In order to lower bound uniformly in � probabilities such as PR� {[0, i] !w [2, 2 + i]}, we
need to paste white paths together. For that, we need the Fortuin-Kasteleyn-Ginibre (FKG) inequality:

• An event A is increasing if for any family (wf )f2F 2 {0, 1}F and (w̃f )f2F 2 {0, 1}F , such that for any
face f , wf  w̃f , we have

(wf )f2F 2 A =) (w̃f )f2F 2 A

• For example, the event “there is a white path from here to here” is an increasing event.
• FKG inequality: For A and B two increasing events, then for the percolation with parameter p, we have

Pp (A \ B) � Pp (A)Pp (B), or equivalently Pp (A|B) � Pp (A).
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• The latter is intuitive, because for exemple the existence of a white path somewhere can only increase
the chances of seeing a white path elsewhere.

• The inequality is the same if they are decreasing events, and in the opposite direction if one is increasing
and the other decreasing.

• Proof is by induction on the number of faces:
– For the first step, let us show a more general version: if µ is a measure on [0, 1] and f and g are

increasing, then ˆ
f(x)g(x)dµ(x) �

ˆ
f(x)dµ(x)

ˆ
g(y)dµ(y).

This implies the FKG inequality with one face: consider f = 1A and g = 1B and µ = (1�p)�0+p�1.
How to show that ? Using the fact that both f and g are increasing, we have:ˆ

(f(y)� f(x))(g(y)� g(x))dµ(y)dµ(x) � 0

and if we expand, we get FKG.
– Then, assume we showed the FKG inequality for n faces and assume that the set of faces F has

cardinal n + 1. Let X and Y be two functions on {0, 1}F which are increasing (i.e. if for any face
f , wf  w̃f , then X(w)  X(w̃) and Y (w)  Y (w̃)). We show that

Ep [XY ] � Ep [X]Ep [Y ]

which implies the FKG inequality for the face percolation on F (consider X = 1A and Y = 1B). We
enumerate the faces, denote by p(0) = 1� p and p(1) = p:

Ep [XY ] =
X

wi2{0,1}

X(w1, . . . , wn+1)Y (w1, . . . , wn+1)
n+1Y

i=1

p(wi)

=
X

wn+12{0,1}

p(wn+1)
X

w1,...,wn2{0,1}

X(w1, . . . , wn+1)Y (w1, . . . , wn+1)
nY

i=1

p(wi).

The term
P

w1,...,wn2{0,1} X(w1, . . . , wn+1)Y (w1, . . . , wn+1)
Qn

i=1 p(wi) is simply

Ep[X(. . . , wn+1)Y (. . . , wn+1)]

where the expectation is with respect to a percolation on the first n faces with parameter p. Since
we assumed that the FKG inequality holds for n faces, and since X and Y are increasing, we have
Ep[X(. . . , wn+1)Y (. . . , wn+1)] � Ep[X(. . . , wn+1)]Ep[Y (. . . , wn+1)]. We denote:

X̂(wn+1) := Ep[X(. . . , wn+1)], Ŷ (wn+1) := Ep[Y (. . . , wn+1)]

thus
Ep [XY ] �

X

wn+12{0,1}

p(wn+1)X̂(wn+1)Ŷ (wn+1)

and we recognize in the right-hand side: E
h
X̂(w)Ŷ (w)

i
where w is a Bernoulli of parameter p. Since

X (resp. Y ) is increasing, X̂ (resp. Ŷ ) is increasing: we can apply FKG inequality: E
h
X̂(w)Ŷ (w)

i
�

E
h
X̂(w)

i
E
h
Ŷ (w)

i
. If we expand the right-hand side, we get that E

h
X̂(w)

i
is equal to:

X

wn+12{0,1}

p(wn+1)X̂(wn+1) =
X

wn+12{0,1}

p(wn+1)
X

w1,...,wn2{0,1}

X(w1, . . . , wn+1)
nY

i=1

p(wi)

=
X

wn+12{0,1}

X

w1,...,wn2{0,1}

X(w1, . . . , wn+1)
n+1Y

i=1

p(wi) = Ep[X]

and similarly for Ŷ . Hence

Ep [XY ] � E
h
X̂(w)Ŷ (w)

i
� Ep[X]Ep[Y ]

and thus we have proven the FKG inequality for n+ 1 faces.
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1.7.3. RSW estimate.

• Consider the rectangle R = [0, 2] ⇥ [0, i] and a symmetric discretization R�. We would like to show the
Russo-Seymour-Welsh (RSW) estimate: we have PR� {[0, i] !w [2, 2 + i]} �

1
16 .

• With the FKG inequality, we can construct a crossing by pasting paths, and thus we can prove RSW:
– With probability 1

2 , there is a path � : [0, i] ! [1, 1 + i], made only of white hexagons, take the
lowest such path possible. Whatever is above it is independent percolation.

– Let �̃ be the reflection of � with respect to the line 1 + iR and let D� be the connected component
R� \ (� [ �̃) lying above � [ �̃ and intersecting the line 1 + iR.

– With probability 1
2 , there is a path � ⇢ D� linking the left and bottom-left part of @D� (i.e. the

part on the line iR and �) to the top-right one (i.e [1 + i, 2 + i]), again by symmetry. Joining � and
� yields a white path [0, i] ! [1 + i, 2 + i].

– So, we have PR� (A) � 1
4 , where A := {[0, i] !w [1 + i, 2 + i]}. By symmetry, we have PR� (B) �

1
4 ,

where B := {[2, 2 + i] !w [i, 1 + i]}.
– If both A and B occur, there is a white path [0, i] ! [2, 2 + i], i.e.

PR� {[0, i] !w [2, 2 + i]} � P (A \ B)

and by FKG, P (A \ B) � 1
16 , which is the desired result.

• More generally, with FKG and RSW, the probability of a crossing in the discretizations of rectangles
[0, L] ⇥ [0, i] are uniformly bounded from below with respect to � > 0 (and from above by duality).
Indeed, the probability of crossing is lower bounded by the probability of:

A0,2 \A1,3 \ ... \AL�2,L \ B1 \ . . . \ BL�2

where Ak,k+2 is the event [k, k + i] !w [k + 2, k + i] and Bk is the even [k, k + 1] !w [k + i, k + 1 + i].
The probability of each event can be uniformly lower bounded, hence by FKG, we can lower bound from
below PR� ([0, i] !w [L,L+ i]) where R� is a dicretization of [0, L]⇥ [0, i].

1.7.4. Annulus crossing estimate.

• By FKG and RSW, we get that the probability of a white loop in a “square” annulus of inner and outer
radii 1 and 2 is uniformly bounded from below with respect to � (we paste again some rectangles with
ratio of the lengths L/` = 4).

• For r,R > 0 consider the discretization A� of a “square” annulus of inner radius r and outer radius R.
The probability that a black path links the inner circle to the outer circle is bounded by C

�
r
R

�↵, for
universal ↵, C > 0.

– To prove that, we decompose A� into k := blog2
�
R
r

�
c concentric annuli Aj

� of inner and outer radii
2j�1

r and 2jr for j = 1, . . . , k
– For each annulus, there is a uniformly positive chance of a white crossing in it.
– Thus

P [inner circle !b outer circle] = 1� P [white circle inside the annulus]

 1� P
h
9j, 9white circle inside A

j
�

i

= P
h
8j, @ white circle inside A

j
�

i

 (1� c)k

where c > 0 is given by the previous annulus crossing estimate and we used in the last inequality
the independence of the percolations in the disjoint area A

j
�. Since k := blog2

�
R
r

�
c, we obtain

(1� c)k  C
�
r
R

�↵ with C,↵ > 0.

1.8. Precompactness.

• To show precompactness, we show that
�
H

1
�

�
�

is uniformly Hölder continuous (the same reasoning applies
to H

2
� and H

3
� )

– There exists C > 0 and ↵ > 0 which do not depend on �, such that for any x, y 2 ⌦�,
��H1

� (x)�H
1
� (y)

�� 
Cd⌦ (x, y)↵ , where d⌦ (x, y) is the length of the shortest path from x to y in ⌦

• How to prove this? Let us assume x and y close (otherwise, there is nothing to prove).
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– We have that (writing kw for ’there is a white path separating’)

H
1
� (x)�H

1
� (y) = P⌦� ({a1, xkwA1})� P⌦� ({a1, ykwA1})

= P⌦� ({a1, xkwA1} \ {a1, ykwA1})� P ({a1, ykwA1} \ {a1, xkwA1})

where we used the fact that P [A]� P[B] = P[A \B]� P[B \A].
– Let us study the probability of the event E1 (x, y) = {a1, xkwA1} \ {a1, ykwA1}.

⇤ We see that the occurrence of E1 implies the existence of a white path from A2 to A3 passing
between x and y, and a black path from A1 to A1 separating x and y.

⇤ In turn, each such path implies that a white or a black path goes from a ’microscopic’ circle
(i.e. of radius d⌦ (x, y)) to a macroscopic circle (i.e. of radius dist ({x, y} , Aj) for j = 1, 2, 3).

⇤ By topology argument, at least one of the macroscopic circles is ’big’ (i.e. greater than a
uniform ✏), and we can bound the probability that this path exists by the application of RSW
above, by the annulus crossing estimate.

– Hence, we get P (E1 (x, y))  Cd⌦ (x, y)↵, where C,↵ > 0 do not depend on �, and by symmetry,
we deduce the uniform Hölder-continuity of H1

� .

• To extract converging subsequences, we extend '� into a continuous function (by piecewise affine inter-
polation for instance), and use Arzelà-Ascoli: obviously ('�)� is bounded and equicontinuous.

• From now on, we will assume that ' is a subsequential scaling limit i.e. ' = lim�n!0 '�n , with '� =

H
1
� + i

p
3
3 H

2
� � i

p
3
3 H

3
� . We also denote by H

µ = lim�n!0 H
µ
�n

.
• It remains to show that ' is the unique conformal map ' : ⌦ ! � which sends a1, a2 and a3 on a, b, and

c.

1.9. Boundary conditions.

• We want to prove that ' is a homeomorphism ' : @⌦ ! @�, so we want to prove that it is a homeo-
morphism ' : A1 !

h
i
p
3

3 ,�
i
p
3

3

i
, ' : A2 !

h
�

i
p
3

3 , 1
i
, ' : A3 !

h
1, i

p
3

3

i
. By symmetry, it is enough to

prove the first assertion.
• To prove that ' : A1 !

h
i
p
3

3 ,�
i
p
3

3

i
is a homeomorphism, we should prove that

(1) For any z 2 A1, <' (z) = 0, i.e. H
1(z) = 0. This follows from RSW:

– If z 2 ⌦� is at a microscopic distance from A1, then if Q1
� (z) happens, there is a white path

from z to A2 and to A3.
– At least one of A2 and A3 is at a macroscopic distance from z. Hence P⌦�

�
Q

1
� (z)

�
! 0.

(2) For any z 2 A1, H2 (z) +H
3 (z) = 1. This follows essentially from self-duality:

– For z 2 ⌦�, P⌦�

�
Q

2
� (z)

�
= P⌦�

⇣
Q̃

2
� (z)

⌘
, where Q̃

2
� = {a2, z kb A2}.

– At least one of Q3
� (z) and Q̃

2
� (z) happens by self-duality and Q

3
� (z) \ Q̃

2
� (z) = ;.

– This is ’regular’ by RSW (i.e. we can exchange limit z ! A1 and � ! 0).
(3) As z 2 A1 moves from a2 to a3, H3 (z) strictly increases from 0 to 1.

– Let z, z̃ 2 A1 with z closer to a2 than z̃. We have that Q
3
� (z) ⇢ Q

3
� (z̃), so

H
3
� (z̃)�H

3
� (z) = P⌦�

⇥
Q

3
� (z̃) \Q

3
� (z)

⇤
.

One considers z, z0, z00, z̃ in c.c.w order, and two disjoint tubes: 1- T1 which links [z, z0] and A3

and 2- T2 which links [z00, z̃] and A2. If there exists a black path in T1 crossing from [z, z0] to
A3 and a white path in T2 crossing from [z00, z̃] to A2, then we are in the set of configurations
Q

3
� (z̃) \Q

3
� (z). Hence since the two tubes are disjoint:

H
3
� (z̃)�H

3
� (z) � P [[z, z0] !w A3 in T1]P [[z00, z̃] !w A2 in T2]

– By RSW, the probabilities of two latter events are strictly positive, so H
3
� (z̃) � H

3
� (z) is

uniformly positive as � ! 0.
– By RSW, making concentric annuli, we see that H3

� (a3) ! 1 as � ! 0 (we can make more and
more concetric annuli around a3 when � ! 0 and for each annulus, there is a strictly positive
probability of seeing a white path separating a3 from A3).

1.10. Discrete Cauchy-Riemann Equations.

• This is the key identity to prove analyticity (which is itself the key property).
• For an oriented edge ~e 2 ⌦� from vertex x 2 ⌦� to vertex y 2 ⌦�, and a function f : ⌦� ! C, we define

the discrete derivative @~ef by f (y)� f (x).
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1.10.1. Holomorphic Functions: Cauchy-Riemann Equations and Morera’s theorem. Some reminder on holomor-
phic functions:

• A function f : C ! C is holomorphic if it satisfies the Cauchy-Riemann equations:

@

@x
<ef(z) =

@

@y
=mf(z),

@

@y
<ef(z) = �

@

@x
=mf(z).

We can write it in a “simpler” form which will be usefull for Cardy’s formula. We denote f
(1) = <ef

and f
(i) = =mf (and similarly, f (�1) = �<ef and f

(�i) = �=mf). With the definition: f(z + h) =
f(z) + @hf(z)h+ o(|h|), we see that the Cauchy-Riemann equations can be written as:

@1f
(1) = @if

(i)
, @if

(1) = @�1f
(i)

or in a shorter form: for any µ, ⌫ 2 {1, i}

(1.1) @µf
(⌫) = @iµf

(i⌫)
.

• In the next step, i.e. to prove the holomorphicity of ', we will use Morera’s theorem: in a simply
connected domain, a function is holomorphic if and only if for any closed smooth loop �,

¸
� f(z)dz = 0.

• Why Morera’s criterion holds: we can define the antiderivative F (z) :=
´ z
w f (⇣) d⇣ (i.e. the definition

is independent of the contour because of the condition on f) and see that F (z) is holomorphic with
complex derivative f . The derivative of a holomorphic function is also holomorphic, hence the result.

1.10.2. Modified discrete Cauchy-Riemann Equations for H
µ
� .

• For the functions H
µ
� , we can write @~eHµ

� = @
+
~e H

µ
� � @

�
~e H

µ
� , where @+~e H

µ
� = P⌦� (Q

µ
� (y) \Q

µ
� (x)) and

@
�
~e H

µ
� = P⌦� (Q

µ
� (x) \Q

µ
� (y)). If ~e�1 is the same edge with reverse orientation, @�~e H

µ
� = @

+
~e�1H

µ
� .

• Set ⌧ = e
2⇡i/3, write ⌧~e for the rotation of ~e around its origin x by 2⇡/3 and set H

1
� , H

⌧
� , H

⌧2

� :=
H

1
� , H

2
� , H

3
� .

• Key Lemma: The modified discrete Cauchy-Riemann equations hold: for µ 2
�
1, ⌧, ⌧2

 
and an oriented

edge ~e, we have

@
+
~e H

µ
� = @

+
⌧~eH

⌧µ
� = @

+
⌧2~eH

⌧2µ
� .

• Remark: This is a modified and discretized version of Equation (1.1).
• Proof of the modified discrete Cauchy-Riemann equations: we suppose µ = 1, and ~e is a horizontal edge

from left to right, let z, w 2 ⌦� be the target endpoints of ⌧~e and ⌧2~e, and let us prove the first identity
(everything is symmetric)

– We have that @+~e H
µ
� is the probability of Qµ

� (y) \ Q
µ
� (x): this event means that there is a white

path � : A2 ! A3 passing between x and y and that there is a black path � : A1 ! {x, z, w}.
– We have that @+⌧~eH

⌧µ
� is the probability of Q⌧µ

� (z) \Q⌧µ
� (x): this event means that there is a white

path �̃ : A1 ! A3 passing between x and z a black path �̃ : A2 ! {x,w, y}.
– In order to show that @+~e H

µ
� = @

+
⌧~eH

⌧µ
� , i.e. P [Qµ

� (y) \Q
µ
� (x)] = P [Q⌧µ

� (z) \Q⌧µ
� (x)], we construct

a bijection between the ! 2 Q
µ
� (y)\Q

µ
� (x) and the !̃ 2 Q

⌧µ
� (z)\Q⌧µ

� (x): because each configuration
has the same probability, this will prove the identity.

– Bijection between the ! 2 Q
µ
� (y) \Q

µ
� (x) and the !̃ 2 Q

⌧µ
� (z) \Q⌧µ

� (x):
⇤ We consider ! 2 Q

µ
� (y) \Q

µ
� (x). There exists a white path � : A2 ! A3 passing between x

and y and a black path A1 ! {x, z, w}.
⇤ Let �2 be the cw-most white path from ~e to A2, let � be the ccw-most black path from ~e to
A1 and let �3 be a the part of � that goes from e to A3.

⇤ Flip the color of all the hexagons that on the ccw side of �2 and on the cw side of � (but
not the one belonging to �2 and �): the white path �3 becomes black, and this map is clearly
invertible. (we can invert it by applying the same procedure)

⇤ Flip the color of all the hexagons: � and �3 become white, �2 becomes black and we get a
configuration !̃ 2 Q

⌧µ
� (z) \Q⌧µ

� (x).
– Hence, we have constructed a bijection, and @+~e H

µ
� = @

+
⌧~eH

⌧µ
� .
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1.11. Analyticity.

• To show analyticity, we use Morera’s criterion: we will show that  := H1 + ⌧H⌧ + ⌧
2
H⌧2 and � :=

H1+H⌧ +H⌧2 (notice ' = 1
3�+

2
3 ) are analytic using Morera’s criterion, by computing Riemann sums

on lattice-level and seeing that they tend to 0. We begin with  .
• Let � ⇢ ⌦ be a simple smooth curve oriented in c.c.w direction, and let �� be a honeycomb discretization

of � that uses O
�
�
�1
�

edges, oriented in ccw direction. Let us call U� the interior of ��.
• Proof of the analyticity:

(1) Discretization: Discretize
¸
�  (z) dz by I�(�, ) :=

P
~e2U�

 � (~e) · ~e, where we write  � (~e) :=
1
2 ( � (y) +  � (x)) and ~e := (y � x) (we will identify oriented edges with complex numbers).

(2) Transforming contour integration into face integration: We can write
X

~e2��

 � (~e) · ~e =
X

f2FU�

X

~e2@f

 � (~e) · ~e,

where FU� is the set of hexagonal faces of U� and @f is the boundary of f , oriented ccw (this is
because an edge which is not on the curve will appear twice, and the contributions will have two
different signs).

(3) Make @~eH
µ
� appears using integration by part : We can rewrite

P
~e2@f  � (~e) ·~e = �

P
~e2@f @~e �m (~e)

by discrete resummation, where m (~e) is the midpoint of ~e. Indeed, more generally, if  and � are
two functions:

X

~e2@f

 (~e)@~e� =
1

2

X

~e2@f

( (y) +  (x)) (�(y)� �(x))

=
1

2

X

~e2@f

 (y)�(y)�  (y)�(x) +  (x)�(y)�  (x)�(x)

=
1

2

X

~e2@f

 (x)�(x)�  (y)�(x) +  (x)�(y)�  (y)�(y)

=
1

2

X

~e2@f

( (x)�  (y))�(x) + ( (x)�  (y))�(y)

=
X

~e2@f

( (x)�  (y))
(�(x) + �(y))

2
= �

X

~e2@f

@~e �(~e),

where we used the notation ~e = (x, y). If we apply this to  =  � and �(z) = z, we obtain the
equality

P
~e2@f  � (~e) · ~e = �

P
~e2@f @~e �m (~e).

(4) Deal with obvious simplifications: Each term @~e �m (~e) can be big: yet since
P

~e2@f @~e � = 0, we
have

P
~e2@f @~e �m (~e) =

P
~e2@f @~e � [m (~e)� ↵f ] for any complex ↵f . If we consider ↵f = c(f) the

center of the face f , using the fact that m(~e)� c(f) = 1
2~e

⇤ where ~e⇤ is the oriented edge of the dual
of ⌦� that crosses ~e oriented such that ~e⇤/ (i~e) > 0, we get

P
~e2@f  � (~e) · ~e = �

P
~e2@f @~e �m (~e) =

1
2

P
~e2@f @~e � · ~e

⇤.
(5) Summing over the faces: With the sum over the faces, we have to study

I�(�, ) =
1

2

X

f2FU�

X

~e2@f

@~e � · ~e
⇤
.

Consider a given orientation of the edges, denoted by ~EU� (i.e. we choose one orientation for each non-
oriented edge): an edge ~e 2 ~EU� which is inside U� and not on �� appears once in the sum I�(�, ) and
its inverse ~e�1 also, besides, since @~e�1 = �@~e and (~e�1)⇤ = �~e

⇤
, the two contributions are equal.

Thus, resumming over all the edges ~e 2 ~EU� , we get I� (�, ) =
P

~e2~EU�
~e
⇤
@~e � + boundary terms.

The boundary terms tend to 0 as � ! 0: there are O
�
1
�

�
of them, and they are of order o (�) (the

� comes from the edge length, the o (1) from @~e , by RSW).
(6) Definition of  , making @

�
~e H

µ
� disappears:  � = H

1
� + ⌧H

⌧
� + ⌧

2
H

⌧2

� , hence

@~e � = @
+
~e H

1
� + ⌧@

+
~e H

⌧
� + ⌧

2
@
+
~e H

⌧2

� � @
+
~e�1H

1
� � ⌧@

+
~e�1H

⌧
� � ⌧

2
@
+
~e�1H

⌧2

�
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and thus
P

~e2~EU�
~e
⇤
@~e � is equal to:

X

~e2~EU�

~e
⇤
h
@
+
~e H

1
� + ⌧@

+
~e H

⌧
� + ⌧

2
@
+
~e H

⌧2

�

i
+

X

~e2~EU�

(�~e⇤)
h
@
+
~e�1H

1
� + ⌧@

+
~e�1H

⌧
� + ⌧

2
@
+
~e�1H

⌧2

�

i

and since (~e�1)⇤ = �~e
⇤
, the second term is

P
~e2~EU�

�
~e
�1
�⇤ h

@
+
~e�1H

1
� + ⌧@

+
~e�1H

⌧
� + ⌧

2
@
+
~e�1H

⌧2

�

i
and

thus,
I�(�, ) ⇠

X

~e2~EU�

~e
⇤
@~e � =

X

~e2EU�

~e
⇤
h
@
+
~e H

1
� + ⌧@

+
~e H

⌧
� + ⌧

2
@
+
~e H

⌧2

�

i

where on the r.h.s. EU� is the set of all oriented edges (note that ~EU� was a choice of orientation, i.e.
for each unoriented edge e = {x, y} either �!xy or �!yx was in ~EU� , whereas both �!

xy and �!
yx are in EU�).

(7) Making @
+
⌧~eH

⌧µ
� and @

+
⌧2~eH

⌧2µ
� appear: We split the sum:

I�(�, ) ⇠
X

~e2EU�

~e
⇤
@
+
~e H

1
� + ⌧

X

~e2EU�

~e
⇤
@
+
~e H

⌧
� + ⌧

2
X

~e2EU�

~e
⇤
@
+
~e H

⌧2

�

and we do a resummation for the second and third terms: up to boundary terms which will disappear,
we have

I�(�, ) ⇠
X

~e2EU�

~e
⇤
@
+
~e H

1
� + ⌧

X

~e2EU�

(⌧~e)⇤ @+⌧~eH
⌧
� + ⌧

2
X

~e2EU�

�
⌧
2
~e
�⇤
@
+
⌧2~eH

⌧2

�

and thus
I�(�, ) ⇠

X

~e2EU�

~e
⇤
@
+
~e H

1
� + ⌧

2
X

~e2EU�

(~e)⇤ @+⌧~eH
⌧
� + ⌧

4
X

~e2EU�

(~e)⇤ @+⌧2~eH
⌧2

�

(8) Cauchy Riemann Equation: we use the fact that @+~e H
1
� = @

+
⌧~eH

⌧
� = @

+
⌧2~eH

⌧2

� , hence

I�(�, ) ⇠
X

~e2EU�

~e
⇤
@
+
~e H

1
� + ⌧

2
X

~e2EU�

(~e)⇤ @+~e H
1
� + ⌧

4
X

~e2EU�

(~e)⇤ @+~e H
1
�

hence using ⌧4 = ⌧,

I�(�, ) ⇠ (1 + ⌧ + ⌧
2)

X

~e2EU�

~e
⇤
@
+
~e H

1
�

(9) ⌧ is a root of unity: since ⌧3 � 1 = 0, we get that 1 + ⌧ + ⌧
2 = 0 and thus I�(�, ) ⇠ 0, i.e.

lim�!0 I� (�, ) = 0, and hence  is analytic.
(10) Similarly, for � := H1 +H⌧ +H⌧2 , we get a cancelation because 1 + ⌧ + ⌧

2 = 0 and � is analytic as
well. Hence ' is holomorphic.
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1. Ising Model

1.1. The Ising Model: Definition, Magnetization and Phase transition:

1.1.1. Definition.
• We consider a finite graph G, with vertices V and edges E, we consider a subset @G ⇢ V and we assume

that two vertices of @G are not connected by an edge.
• The Ising model is a random assignment of ±1 spins on Vint := V \ @G. On the boundary @G the spins

will be fixed: it is the boundary condition. If b : @G ! ±1 is a boundary condition, the Ising model is a
probability on

{+1,�1}Vb :=
�
� 2 {+1,�1}V | �(x) = b(x), 8x 2 @G

 
.

• The main boundary conditions that we will consider are:
– the + boundary condition, when @G 6= ; and b(x) = +1 for x 2 @G,
– the � boundary condition, when @G 6= ; and b(x) = �1 for x 2 @G,
– the free boundary condition, when @G = ;.

• The probability of a spin configuration (�x)x2V is proportional to e
��H(�), where H (�) = �

P
hiji2E �i�j

is the energy (the sum is over all unoriented edges) and � > 0 is the inverse temperature.
• In other words, in the Ising model with boundary condition b, and inverse temperature �, for any

� 2 {+1,�1}Vb ,
P
G
b,� {�} = e

��H(�)
/Z� ,

where Z� =
P

�̃2{+1,�1}V
b

e
��H(�̃) is the partition function. We will often omit one or more of the indices

G,�, b when it can be deduced from the context.
• When � ! 0, the measure converges to the uniform measure on the configuration space: a lot of

disagreements between spins, a lot of disorder, this represents a system at high temperature. When
� ! 1, the spin configuration “freezes”, the measure converge to a uniform measure on the minima of
the energy H (for ex., in the +1 boundary condition, it converges to the Dirac measure on the constant
configuration �x = +1): this represents a system at low temperature. This explains why � is called the
inverse temperature.

• Remark: we can generalize the Ising model by introducing an external magnetic field (add h
P

i �i to
�H (�)), replacing �i�j by general couplings Jij�i�j , ..., but we will not do that (not that it is not
interesting, but things become more difficult...)

1.1.2. Global flip symmetry.
• If � = (�x)x2V is a random configuration with law P

G
b , then �� = (��x)x2V is a random configuration

with law P
G
�b. Indeed, P(�� = s) = P(� = �s) ⇠ e

��H(�s) = e
��H(s) and the only thing which changed

is that �� 2 {�1, 1}V
�b.

• In particular, if � follows the law of the Ising model with free boundary condition, then �� has the same
law. This implies that for any vertices x1, . . . , xn

E
G
free

"
nY

i=1

�xi

#
= 0

if n is odd since E
G
free [

Qn
i=1 �xi

] = E
G
free [

Qn
i=1 ��xi

] = (�1)nEG
free [

Qn
i=1 �xi

] .

1.1.3. Motivation.
• The Ising model was introduced as a model of ferromagnetism: one would like to study how small magnets

that tend to align locally (in ferromagnetic material) behave, and to understand why at low temperature,
they tend to align globaly whereas they don’t at high temperature.

• Explaining clearly why this happens for a number of materials (such as iron) requires quantum mechanics
and is difficult.

1
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• Anyway, the model is a strong simplification of reality (spins only take two directions, we don’t have
magnetic field and this is not a quantum model).

• Nevertheless, there is a strong support for universality.
• General postulate in statistical mechanics: the probability of a configuration (in the so-called canonical

ensemble) is proportional to its Boltzmann weight exp (��H). In fact, this is the family of probability
measures obtained by maximizing the entropy:

Ent(µ) = �

X

�

µ(�) log(µ(�))

in the space of probability measures with fixed mean energy (i.e.
P

� µ(�)H(�) = ↵).

1.1.4. Influence of the boundary condition on the boundary and phase transition.
• We consider a square-grid discretization ⌦� with mesh � of a planar domain such that 0 2 ⌦, and with

boundary @⌦�.
• When � ! 1, the system freezes, hence the boundary has a large influence on the spin at 0. When

� ! 0, the spins inside the domain become independent: the boundary has no influence on the spin at 0.
• How do the boundary condition influences the spin at 0 (and more generally the measure) when there

are more and more spins (i.e. when the mesh � goes to 0) ?
• General Results on the Magnetisation: We consider the Ising model on ⌦�. The one with + boundary

condition is denoted by E
+
� . We will show that

– For any boundary condition ⌘ (which can be the free boundary condition),

E
�

� [�0]  E
⌘
� [�0]  E

+
� [�0].

(i.e. the + boundary condition is the one which has the most “positive” influence on the spin at 0.)
– � ! E

+
� [�0] is decreasing in �: it converges as � ! 0 to the magnetization denoted by h�0i

+
� . (i.e.

the more the boundary is far away, the less it has an influence on 0)
– � ! h�0i

+
� is:

⇤ increasing in � (when the temperature decreases, the system tends to freeze and the boundary
condition has more influence),

⇤ equal to 0 when � ⌧ 1 (when the temperature is too hight, when there is an infinite number
of atoms, the boundary condition does not influence the spin in the bulk),

⇤ strictly positive when � � 1,
⇤ thus, there is a phase transition between the �s such that h�0i

+
� = 0 and the ones such that

h�0i
+
� > 0.

– We consider 0 < �c = sup
n
�, h�0i

+
� = 0

o
< 1. Using a duality argument, the Kramers-Wannier

duality, we will show that if the critical � is the self-dual point, then �c =
1
2 ln

�p
2 + 1

�
.

1.2. Boundary conditions and conditionning.

1.2.1. Relation between the + and the free boundary conditions.
• We can consider the graph G

g obtained from G by merging the boundary vertices @G into one vertex g
(which is the new boundary). The restriction on {+1,�1}Vint of the + boundary Ising measure on G is
equal to the restriction on {+1,�1}Vint of the + boundary Ising measure on G

g.
• The + boundary and free boundary Ising measures on G

g are related. If one considers the free boundary
Ising measure on G

g and conditions on the fact that �g = +1, one obtains the Ising measure on G
g with

+ boundary condition.
• Thus, for any A ⇢ Vint, if we denote �A :=

Q
x2A �x, we get

E
Gg

+ [�A] = E
Gg

f [�A | �g = +1] =
E
Gg

f

⇥
�A1�g=+1

⇤

P
Gg

f [�g = +1]

and using that 1�g=1 = 1
2 (�g + 1), and that, from the spin flip symmetry, PGg

f [�g = +1] = 1
2 ,

E
Gg

+ [�A] = E
Gg

f [�A�g] + E
Gg

f [�A] .
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Using again the spin flip symmetry, we get that

E
G
+ [�A] = E

Gg

+ [�A] =

(
E
Gg

f [�A�g] if |A| is odd,
E
Gg

f [�A] if |A| is even.

1.2.2. Markov Property.
• Let b : @G ! {+1,�1} be a boundary condition. We consider an induced subgraph H ⇢ G (if x, y 2 H

and x ⇠ y in G then the edge {x, y} is an edge in H), @GH = {x 2 G \ H, 9y 2 H, x ⇠ y} ⇢ Vint,
w : G \ H ! {+1,�1} such that w|@G = b and � a random configuration coming from the Ising model
on G with boundary condition b.

• The law of �|H conditionned on the fact that �|G\H = w is the Ising law on H with boundary condition
w|@H. Indeed,

P
⇥
�|H = s | �|G\H = w

⇤
=

P
⇥�
�|H = s

�
&
�
�|G\H = w

�⇤

P
⇥
�|G\H = w

⇤ / P
⇥�
�|H = s

�
&
�
�|G\H = w

�⇤
/ e

��H(s)

where H(s) = �
P

x⇠y,x2H,y2H
sxsy �

P
x⇠y,x2H,y2@H sxwy.

• Remark : We will use this to relate the Ising model with + boundary condition on D with the Ising
model with + boundary condition on D

0
� D: the first can be obtained from the second by conditionning

all the spins outside D to be equal to +1.
• Markov Property of the Ising Model: if we condition an Ising model to take some values on a subset

⇤ such that G \ ⇤ has two connected components (e.g. ⇤ is a closed curve in the graph with an inside
and outside), then what we see in each components are two independent Ising models (with boundary
conditions which can be deduced from the one of the initial model and the values on ⇤ we conditionned
on).

1.3. Simulation.

1.3.1. Algorithms.
• Metropolis algorithm/Glauber dynamics: start from an arbitrary configuration (with the boundary

values as specified by the Ising measure we want to sample), and make random flips:
– Compute the energy of the current configuration H�.
– Pick a vertex x at random (in Vint), consider the configuration ⇢, obtained by flipping the spin x of

�, and compute its energy H⇢.
– If H⇢  H�, replace � by ⇢. If H⇢ > H�, replace � by ⇢ with probability e

��H⇢/e
��H� (i.e. the

relative probabilities of ⇢ and �).
– This defines a Markov chain on the state space S := {±1}Gb , with transition matrix PM = (PM )⇢�.

• Heat bath dynamics: start from an arbitrary configuration (with the boundary values as specified by
the Ising measure we want to sample), and make random flips

– Compute the energy of the current configuration.
– Pick a vertex x at random, and sample the spin �x at random by giving probability

P {�x} =
e
��H[�+]

e��H[�+] + e��H[��]
,

where �
+ and �

� denote the configuration �, with the spin �x forced to be +1 and �1 respectively.
– This define a Markov chain on S, with transition matrix PH .

• Theorem: for any initial probability measure µ on S, we have that µP
n
M ! µ

�
Ising and µP

n
H ! µ

�
Ising as

n ! 1.
• In order to prove this, we recall some results on Markov Chains.

1.3.2. Markov Chain and convergence of the measure.
• Recall the following Markov chain results: if P is the transition matrix of an irreducible aperiodic Markov

chain on S (i.e. there exists N such that for any m � N , (Pm)�⇢ > 0 for all �, ⇢ 2 S), then µP
n
! µstat

as n ! 1, where µstat is the unique stationary measure, i.e. µstatP = µstat. Idea of the proof:
– We know 1 is an eigenvalue of P , and hence of PT ; we know the eigenvalues of P are  1 in modulus,

so are the ones of PT .
– Perron-Frobenius theorem: let Q be a matrix with positive entries. Then the largest eigenvalue (in

modulus) is real, simple and the corresponding eigenvector can be taken with positive entries.
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– Apply Perron-Frobenius to Q = P
N , and deduce that there is a unique positive eigenvector of

eigenvalue 1 for Q (up to multiplication by a positive number), but then it implies the same results
for P

T (otherwise, there would be a contradiction).
– In particular, there exists a unique stationary measure µstat for P .
– This implies that µP

n converges to a multiple of the unique stationary measure µstat. Since µP
n

and µstat are two probability measures, µPn converges to µstat.
• Sufficient (but non-necessary criterion) for measure invariance: the detailed balance.

– A measure µ is stationary if and only if
P

� µ(�)P (�, ⇢) = µ(⇢). Using the fact that
P

� P (⇢,�) = 1,
we can write the previous equation as

X

�

µ(�)P (�, ⇢) =
X

�

P (⇢,�)µ(⇢)

– A measure µ such that µ(�)P (�, ⇢) = µ(⇢)P (⇢,�) for all �, ⇢ 2 S is said to satisfy the detailed
balance equation: the “flux” of probability from � to ⇢ equals the “flux” of probability of ⇢ to �.
Using the first point, we obtain the following proposition:

– Proposition: if µ satisfies the detailed balance, then µ is a stationary measure for P .

1.3.3. Proof of convergence for the Metropolis and Heat bath dynamics:
• The Heat Bath and Metropolis dynamics are irreducible and aperiodic:

– Heat-bath dynamics: for any �, ⇢, we consider a path � = �0 ! ... ! �n = ⇢ where �i+1 and �i

only differ at one vertex, P[Xn = �n, . . . , X1 = �1 | X0 = �0] > 0 and thus P
n
M (�, ⇢) > 0. Since in

this dynamics, there is a positive probability to stay at the same configuration after one step, we
get that for any m � n, Pm

H (�, ⇢) > 0. Since there is a finite number of configurations, there exists
N such that for any m � N , for any �, ⇢, Pm

H (�, ⇢) > 0: the dynamics is irreducible and aperiodic.
– Metropolis dynamics: One has to be careful about something: if the configuration maximises the

energy, the probability to stay at this configuration is 0. Using the same arguments as before, for
any �,⇢ such that one of the two configurations does not reach the maximal energy, there exists n

such that that for any m � n, Pm
M (�, ⇢) > 0. It remains to prove this when the two configurations

have the maximal energy. In this case, one considers �
x obtained by flipping the spin at x in the

spin configuration �. If �x has maximal energy, then the probability to stay at � is positive and
we can apply the same arguments as before. If the energy of �

x is smaller than the one of �,

the probability to stay at �
x is positive: we consider n such that P

n
H(�x, ⇢) > 0, then for any m,

P
n+m+1
H (�, ⇢) � PH(�,�x)Pm

H (�x,�x)Pn
H(�x,�⇢) > 0. This allows us to conclude that the dynamics

is irreducible and aperiodic.
• The Ising Measure with inverse temperature � is the unique stationary measure since it satisfies the

detailed balance equation.
– Metropolis dynamics: assume H⇢ > H⇢ (the other situation is symmetric) , we have a flux

1
|V |

�
e
��H⇢/e

��H�

�
e
��H� = e

��H⇢ from � to ⇢, and a flux 1
|V |

1 · e
��H⇢ from ⇢ to �, so both are

equal – the 1
|V |

is there because we pick the vertices uniformly.
– Heat-bath dynamics: if ��

,�
+ are configurations coincinding except at a vertex x, ��

x = �1 and

�
+
x = 1, we have a flux 1

|V |

e
��H[��]e��H[�+]

e��H[�+]+e��H[��] from �
� to �

+ and flux 1
|V |

e
��H[�+]e��H[��]

e��H[�+]+e��H[��] from �
+

to �
�, which are both equal.

• The convergence of the algorithms is a consequence of the main theorem of the previous subsection.

1.4. Graphical expansions.
• We are going to express the partition functions

Z =
X

�2{+1,�1}V
b

e
��H(�)

, ZA =
X

�2{+1,�1}V
b

�Ae
��H(�)

where �A =
Q

x2A �x using more geometric objects.
• The correlations can be expressed using the fact that E

G
b [�A] =

ZA

Z .

1.4.1. General strategy:
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• We write
ZA =

X

�2{+1,�1}V
b

e
��H(�)

�A =
X

�2{+1,�1}V
b

Y

e2E

e
��(x)�(y)

�A =
X

�2{+1,�1}V
b

Y

e2E

f(�x�y)�A.

• The function f : � ! e
��� can be decomposed in a basis or family of functions which spans the space

of functions on {+1,�1}. Depending on the family, we get different graphical expansions of the Ising
model:

– Low Temperature Expansion: f0 : � ! ��=1 and f1 : � ! ��=�1:

f(�) = e
�
�
��=1 + e

�2�
��=�1

�
.

– High Temperature Expansion: f0 : � ! 1 and f1 : � ! �: using the fact that �
2n = 1,

�
2n+1 = �, and the Taylor expansion f(�) =

P
n2N

�n

n! �
n, we get

f(�) =
X

n2N

�
2n

(2n)!
+
X

n2N

�
2n+1

(2n+ 1)!
� = cosh(�) [1 + tanh(�)�] .

– F-K Expansion: f0 : � ! 1 and f1 : � ! ��=1:
f(�) = e

�
�
e
�2� + (1� e

�2�)��=1

�
.

– Current Expansion: (fi : � ! �
i)i�0,

f(�) =
X

n2N

�
n

n!
�
n
.

• Once we have chosen the family, we decompose: f =
P

i2I aifi, thus

ZA =
X

�2{+1,�1}V
b

Y

e2E

X

i2I

aifi(�x�y)�A.

• We expand the product
Q

e2E :

ZA =
X

�2{+1,�1}V
b

X

(ie)e2E

 
Y

e2E

aie

!
Y

(x,y)=e2E

fie(�x�y)�A

and we can exchange the two summations:

ZA =
X

(ie)e2E

 
Y

e2E

aie

!
X

�2{+1,�1}V
b

Y

(x,y)=e2E

fie(�x�y)�A.

It remains to compute

C(A, (ie)e2E) :=
X

�2{+1,�1}V
b

Y

(x,y)=e2E

fie(�x�y)�A

which will depend on the family (fi)i2I we have chosen.

1.4.2. Low-Temperature Expansion.
• We consider the + boundary conditions.
• We use the fact that f(�) = e

�
�
��=1 + e

�2�
��=�1

�
: from the general strategy (Section 1.4.1), with

f0(�) = ��=1 and f1(�) = ��=�1, we get

Z = e
�#E X

E⇢E
e
�2�#E

X

�2{+1,�1}V
+

Y

(x,y)=e2E

��x 6=�y

• For any E ⇢ E,
P

�2{+1,�1}V
+

Q
(x,y)=e2E

��x 6=�y
is either equal to 0 or to 1.

– It is easier to consider the dual E⇤
⇢ E

⇤, the condition
Q

(x,y)=e2E
��x 6=�y

tells us that �x and �y

should be distinct if (x, y) crosses e
⇤
2 E

⇤.
– Hence if

Q
(x,y)=e2E

��x 6=�y
6= 0 then E

⇤ is the set of disorder edges for � (i.e. the set of dual edges
which separates spins with different values): this set yields a configuration of loops.

– Besides, since we are considering the + boundary condition, the map �!{e 2 E
⇤
, e is a disorder edge}

is a bijection between configurations of spins � and the sets E
⇤
⇢ E

⇤ which are disjoint union of
loops (i.e. every dual vertex is contained in an even number of dual edgers in E

⇤).
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• Hence
Z = e

�#E X

E⇤2C(E⇤)

e
�2�#E

⇤

where C(E⇤) is the set of collection of dual edges that form closed loops.
• Remark: we can recover this expansion simply by using the bijection ◆ : �!{e 2 E

⇤
, e is a disorder edge}

seeing that H(�) = 2#◆(�)�#E, hence

Z =
X

E⇤2C(E⇤)

e
��H(◆�1(E⇤)) = e

�#E X

E⇤2C(E⇤)

e
�2�#E

⇤
.

• The correlations are more complicated to obtain, yet, note that �x can be recovered from ◆(�) by con-
sidering (�1)N

◆(�)
x , where N

◆(�)
x := #{� 2 ◆(�), � loop which surrounds x}, hence:

E+ [�x] =

P
E⇤2C(E⇤)(�1)N

E⇤
x e

��H(◆�1(E⇤))

P
E⇤2C(E⇤) e

��H(◆�1(E⇤))
=

P
E⇤2C(E⇤)(�1)N

E⇤
x e

�2�#E
⇤

P
E⇤2C(E⇤) e

�2�#E⇤ .

1.4.3. High-Temperature Expansion.
• We consider the free boundary condition, the case of + b.c. will be provided at the end of the section.
• We use the fact that f(�) = cosh(�) [1 + tanh(�)�]: from the general strategy (Section 1.4.1), with

f0(�) = 1 and f1(�) = �, and using the bijection between (ie)e2E 2 {0, 1}E and subsets E of E,

ZA = cosh(�)#E X

E⇢E
tanh(�)#E

X

�2{+1,�1}V

Y

(x,y)=e2E

�x�y�A.

• For any E ⇢ E,
Q

(x,y)=e2E
�x�y�A =

Q
x2V �

nE(x)
x �A where nE(x) = #{e 2 E , x is an endpoint of e}

is the degree of x in E . Using the fact that �
nE(x)
x = 1 if nE(x) is even, and �

nE(x)
x = � is it is odd,Q

(x,y)=e2E
�x�y�A = �@E�A where:

– @E is the source of E , i.e. the set of x such that nE(x) is odd,
– �C =

Q
x2C �x for any C ⇢ V,

– � is the symetric difference: A�B = (A \B) \ (B \A).
• Orthogonality of the �C .

– Let C ⇢ V:
P

x2{+1,�1}V �C = �C=;2
V. Indeed, if C = ;, this a consequence of the fact

#{+1,�1}V = 2V. If C 6= ;, consider x0 2 C, and the map � ! ◆(�) where ◆(�) differs from �

only at x0 (this is an involution, thus a bijection). Then ◆(�)C = ��C and thus
P

x2{+1,�1}V �C =

1
2

hP
x2{+1,�1}V �C +

P
x2{+1,�1}V �C

i
= 1

2

hP
x2{+1,�1}V (�C + ◆(�)C)

i
= 0.

– More generally, if A,B ⇢ V,
X

x2{+1,�1}V
�A�B = �A=B2

V
.

Indeed, �A�B = �A�B and we can apply the previous result.
• The High temperature expansion: since ZA = cosh(�)#EP

E⇢E tanh(�)
#E
P

�2{+1,�1}V �@E�A, using the
previous result:

ZA = 2#V cosh(�)#E X

E⇢E,@E=A

tanh(�)#E
.

• In particular, we get the high temperature expansion of the correlations for the free boundary condition:

E
G
f [�A] =

P
E⇢E,@E=A tanh(�)#E

P
E⇢E,@E=;

tanh(�)#E
.

• Geometric interpretation: @E = A if and only if we can write E as the disjoint union of loops and n paths
which joins pairwise the elements of A. In particular, we recover the fact that if #A is odd, EG

f [�A] = 0.
• Using the same arguments, we get the following high temperature expansion of the correlations for the

+ boundary condition:

E
G
+ [�A] =

P
E⇢E,@E�A⇢@G tanh(�)#E

P
E⇢E,@E⇢@G tanh(�)#E

.

Geometric interpretation: @E�A ⇢ @G if and only if we can write E as the disjoint union of loops, arcs
between points in @G and paths which join pairwise the elements of A [ X where X ⇢ @G.
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• Exercise: prove this.

1.4.4. FK-Expansion.
• See Exercise Sheet 12, Exercise 2.

1.4.5. Current Expansion.
• We consider the free boundary conditions, the case of + b.c. can be studied in a similar way.
• We use the fact that f(�) =

P
n2N

�n

n! : from the general strategy (Section 1.4.1), with fi(�) = �
i, we

get:

ZA =
X

(ne)e2E2NE

 
Y

e2E

�
ne

ne!

!
X

�2{+1,�1}V

Y

(x,y)=e2E

(�x�y)
ne

�A.

• Notations/Definitions:
– n := (ne)e2E 2 N

E is called a current,
– n̂e = 1{ne>0}, (n̂e)e2E is the skeleton of n.
– with n(x) =

P
x is an endpoint of e ne we define the source @n of n as the set of x such that n(x) is odd.

• For any current n,
Q

(x,y)=e2E
(�x�y)

ne
�A =

Q
x2V �

n(x)
x �A = �@n�A. Using the orthogonality of the

�C ’s, we get
X

�2{+1,�1}V

Y

(x,y)=e2E

(�x�y)
ne

�A = 2#V
�@n�A=;.

• Thus, we get the current expansion for the (modified) partition function for the Ising model with free
boundary condition:

ZA = 2#V X

n2NE|@n�A=;

!(n)

where !(n) =
⇣Q

e2E
�ne

ne!

⌘
, and thus the current expansion of the correlations for the free boundary

condition:

E
G
f [�A] =

P
n2NE|@n�A=;

!(n)
P

n2NE|@n=;
!(n)

.

1.4.6. Double current representation.
• Goal: express E

G
f [�A]

2 as a probability of an event in a model with two random currents.
• Notations: recall n̂e = 1{ne>0}, (n̂e)e2E is the skeleton of n; if A ⇢ V and E ⇢ E, we denote E 2 FA if

and only if each connected component of the graph obtained by considering the vertices V but only the
edges E intersects A an even number of times (for example, if A = {x, y} this is equivalent to the fact
that x and y are connected using concatenations of edges in E).

• Tool: the switching lemma: for any A and B subsets of V, for any function F on currents,
X

@n1=A

@n2=B

!(n1)!(n2)F (n1 + n2) =
X

@n1=;
@n2=A�B

!(n1)!(n2)1{ \n1+n22FA}
F (n1 + n2)

• Proof when A = {x, y}:

– !(n1)!(n2) =
�n1

n1!
�n2

n2!
= �n1+n2

(n1+n2)!
(n1+n2)!
n1!n2!

= !(n1 + n2)

✓
n1 + n2

n1

◆
.

– Express everything using n1 and m = n1 + n2:

⇤
P

@n1=A

@n2=B

!(n1)!(n2)F (n1 + n2) =
P

@n1=A,n1m
@m=A�B

!(m)

✓
m
n1

◆
F (m),

⇤
P

@n1=;
@n2=A�B

!(n1)!(n2)1{ \n1+n22FA}
F (n1 + n2) =

P
@n1=;,n1m

@m=A�B

!(m)

✓
m
n1

◆
1{bm2FA}F (m),

– It remains to show that
X

@n1=A,

n1m

✓
m
n1

◆
= 1{bm2FA}

X

@n1=;,
n1m

✓
m
n1

◆
.
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– The condition {bm 2 FA} is equivalent to the fact that x and y are connected in bm. If it is not the
case, then there can not be any n1  m with @n1 = {x, y} since the last condition implies that x and
y are connected in cn1 hence they should be connected in bm. We assume that x and y are connected
in bm: we need to prove

X

@n1=A,

n1m

✓
m
n1

◆
=

X

@n1=;,
n1m

✓
m
n1

◆
.

– We consider the modified graph Gm where each edge e is drawn me times instead of 1 time. Then
P

@n1=A,

n1m

✓
m
n1

◆
is the cardinality of the subgraphs H ⇢ Gm with source A (to a subgraph one

can naturally associate a current on G by counting the number of times one uses the edge e) and
P

@n1=;,
n1m

✓
m
n1

◆
is the cardinality of the subgraphs H ⇢ Gm with no source.

– Since x and y are connected in bm, we can consider a path p in Gm which connects x and y. Then
the map H ! H� p = {e 2 H}�{e 2 p} is a bijection (since it is an involution) between the set of
subgraphs of Gm without source and the ones with source {x, y}. This allows us to conclude.

• Theorem: We consider the measure P
;(n) = !(n)P

n,@n=; !(n) on the currents with no source and the measure

P
;
⌦ P

;(n1, n2) = P
;(n1)P;(n2) (i.e. two independant currents). The Double Current representation of

the square of the correlations is:

E
G
f [�A]

2 = P
;
⌦ P

;

h
\n1 + n2 2 FA

i
.

• Proof:
– We have

E
G
f [�A]

2 =

P
@n1=A

@n2=A

!(n1)!(n2)
P

@n1=;
@n2=;

!(n1)!(n2)
.

– Using the switching lemma

E
G
f [�A]

2 =

P
@n1=;
@n2=;

!(n1)!(n2)1{ \n1+n22FA}

P
@n1=;
@n2=;

!(n1)!(n2)
.

– We conclude using the definition of the current distribution.

1.5. The Magnetisation. We will use all the tools developped in the previous section in order to prove the
assertions in Section 1.1.4.

1.5.1. The G-K-S inequality.
• For the free boundary condition Ising model,

E
G
f [�A�B ] � E

G
f [�A]E

G
f [�B ]

where we recall that �A =
Q

x2A �x.
• Remark: this is similar to the FKG inequality we have seen for the percolation, but notice that �A is not

an increasing function, neither �B . Note that it can be written in the following form:

CovGf (�A,�B) � 0.

• The same holds for the + boundary condition (Exercise: do it using Section 1.2.1).
• The proof is based on the current expansion and the switching lemma:

– Current expansion: E
G
f [�A] =

P
n,@n=A

w(n)P
n,@n=; w(n) , where w(n) =

Q
e2E

�ne

ne!
.

– Expand product: E
G
f [�A]EG

f [�B ] =
P

(n1,n2)2CA⇥CB
w(n1)w(n2)

(
P

n,@n=; w(n))2
, where CA is the set of currents with

source @n = A.
– Switching lemma:

X

(n1,n2)2CA⇥CB

w(n1)w(n2) =
X

(n1,n2)2C;⇥CA�B

w(n1)w(n2)1{ \n1+n22FA}
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hence

E
G
f [�A]E

G
f [�B ] =

P
(n1,n2)2C;⇥CA�B

w(n1)w(n2)1{ \n1+n22FA}

⇣P
n,@n=;

w(n)
⌘2 .

– Forget about the condition { \n1 + n2 2 FA}:

E
G
f [�A]E

G
f [�B ] 

P
(n1,n2)2C;⇥CA�B

w(n1)w(n2)
⇣P

n,@n=;
w(n)

⌘2 =

P
n2CA�B

w(n)
⇣P

n,@n=;
w(n)

⌘ = E
G
f [�A�B ] .

– E
G
f [�A�B ] = E

G
f [�A�B ], hence E

G
f [�A]EG

f [�B ]  E
G
f [�A�B ].

1.5.2. Monotonicity with respect to the boundary condition.
• We can couple Ising models with arbitrary boundary conditions b, with + b.c. and with � b.c. such that

�
(�)

 �
(b)

 �
(+) (where �  ⇢ means �x  ⇢x for all x 2 V). The proof is as follows:

– We couple the heat-bath dynamics �
(+)
n , �(�)

n with + and � boundary conditions (we do not flip
the boundary spins), together with �

(b)
n such that at any time n � 0, �(�)

n  �
(b)
n  �

(+)
n :

⇤ Consider the same vertex at each step,
⇤ Decide the sign of the spin using the same uniform variable. (�(b/+/�)

n+1 (x) = 1 if U 

e��H+

e��H++e��H� where H+ is the energy of the configuration obtained from �
(b/+/�)
n by putting

the spin at x equal to +1, and similarly for H� putting the spin at x equal to �1).
– From Question 3 of Exercise 3 of Ex. Sheet 12, if two starting configurations are such that �0  �̃0,

then for all the times steps �n  �̃n for the Heat bath dynamics.
– We initialize the Heat bath dynamics using:

⇤ for the � b.c., the constant configuration �
(�)
0 (x) = �1

⇤ for the + b.c., the constant configuration �
(�)
0 (x) = +1

⇤ for the b b.c., the configuration where �x = b(x) on the boundary and �x = �1 for all inner
vertices.

– The starting configurations are such that �
(�)
0  �

(b)
0  �

(+)
0 , and thus, for any n,

�
(�)
n  �

(b)
n  �

(+)
n .

Taking the limit n ! 0, and using the convergence theorem, we get a coupling for the Ising measures
for different boundary conditions:

�
(�)

 �
(b)

 �
(+)

.

• For any increasing function F : {+1,�1}Vin ! R, (i.e. if �  ⇢ then F (�)  F (⇢)) then

E
� [F (�)]  E

b [F (�)]  E
+ [F (�)]

• We consider a square-grid discretization ⌦� with mesh � of a planar domain with 0 2 ⌦, and with
boundary @⌦�. The function � 7! �0 is an increasing function:

E
�

� [�0]  E
b
�[�0]  E

+
� [�0].

1.5.3. Monotonicity with respect to � (see also Ex 2, Sheet 11).
• With the notations Z =

P
� e

��H(�) and ZF =
P

� F (�)e��H(�)
, one has E� [F (�)] = ZF

Z hence

d

d�
E� [F (�)] =

d
d�ZF

Z
� E [F (�)]

d
d�Z

Z

Since d
d�Z = ��

P
� H(�)e��H(�) = ��ZH and d

d�ZF = ��
P

� F (�)H(�)e��H(�) = ��ZFH , we get

d

d�
E� [F (�)] = ��E� [F (�)H(�)] + �E� [F (�)]E [H(�)]

or
d

d�
E� [F (�)] = �� [Cov� [F,H]]
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• If we specify using the definition of the energy in the Ising model, we get

d

d�
E� [F (�)] = �

"
X

e2E
Cov� [F,�e]

#

where for any edge e = {x, y}, �e : � ! �x�y.
• Theorem: For the + boundary condition, for any A ⇢ Vint, � 7! E

G
+,� [�A] is non decreasing.

– By the previous results: d
d�E

G
+,� [�A] = �

hP
e2E Cov

G
+,� [�A,�e]

i

– Using the G.K.S. inequality, d
d�E

G
+,� [�A] � 0.

• In particular, if we consider a square-grid discretization ⌦� with mesh � of a planar domain 0 2 ⌦, and
with the natural boundary @⌦�, once we will have shown that h�0i

⌦
+,� := lim�!0 E

⌦�

+,� [�0] exists, this
theorem shows that

� 7! h�0i
⌦
+,�

is non decreasing in �.

• Remark: the same holds for free boundary conditions.

1.5.4. Monotonicity with respect to �.
• Theorem: If we consider the Ising model with + boundary condition on a square-grid discretization ⌦�

with mesh � of a planar domain 0 2 ⌦, the function � 7! E
⌦�

+ [�A] is increasing in � (or in other words
E
⌦�

+ [�A] decreases as � & 0: since the boundary is further away when � ! 0, the boundary effect gets
smaller)

– This is equivalent to the fact that if we consider ⇤0
⇢ ⇤ some induced graphs in Z

2, then

E
⇤0

�,+ [�A] � E
⇤
�,+ [�A] .

– The + b.c. Ising model on ⇤0 can be obtained from the one on ⇤ by conditionning the spins in ⇤\⇤0

to be equal to +1:

E
⇤0

�,+ [�A] =
E
⇤
�,+

h
�A
Q

x2⇤\⇤0 1�x=+1

i

E
⇤
�,+

hQ
x2⇤\⇤0 1�x=+1

i

– We write this using the �. functions: 1�x=1 = 1
2 (�x + 1), thus

Q
x2⇤\⇤0 1�x=+1 = 1

2|⇤\⇤0|

Q
x2⇤\⇤0 (�x + 1)

and thus there exists (we do need to be explicit) aC � 0 for any C ⇢ ⇤ \ ⇤ such that:
Y

x2⇤\⇤0

1�x=+1 =
X

C⇢⇤\⇤

aC�C .

– Insert this decomposition:

E
⇤0

�,+ [�A] =

P
C⇢⇤\⇤ aCE

⇤
�,+ [�A�C ]P

C⇢⇤\⇤ aCE
⇤
�,+ [�C ]

– Use GKS inequality:

E
⇤0

�,+ [�A] �

P
C⇢⇤\⇤ aCE

⇤
�,+ [�A]E⇤

�,+ [�C ]P
C⇢⇤\⇤ aCE

⇤
�,+ [�C ]

= E
⇤
�,+ [�A] .

• Remark: for free boundary condition, E⌦�

f [�A] is increasing as � & 0. The proof is different:
– we prove that if ⇤0

⇢ ⇤ then E
⇤0

�,f [�A]  E
⇤
�,f [�A]. As for the + boundary condition, the Ising

model on ⇤0 is a modification of the Ising model on ⇤.
– What one can do is to consider an “edge-dependent” inverse temperature: (�̃e)e2E. If we consider

an Ising model on ⇤, with �̃e = � if e is an edge in ⇤0 and �̃e = 0 if e is not an edge in ⇤0, then
what we see is an Ising model on ⇤0 which is independent from a collection of i.i.d. variables �x for
x 2 ⇤ \ ⇤0. Thus, E⇤0

�,f [�A] = E
⇤
�̃,f

[�A].
– In order to go from the model with probability measure P

⇤
�̃,f

to the Ising model on ⇤, one has to
increase the inverse temperature on each edge e /2 ⇤0.

– Using the same arguments as in the previous section, the expectation of �A increases as we do so.
Thus E

⇤0

�,f [�A] = E
⇤
�̃,f

[�A]  E
⇤
�,f [�A].
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• Corollary: h�0i
⌦
+,� := lim�!0 E

⌦�

+,� [�0] exists. (it is bounded below and decreases, so it converges).

1.5.5. Peierls argument.
• Theorem: If � > 0 is large, then h�0i

⌦
+,� > 0.

• The idea is that since we consider � � 1, we are in the low temperature regime and thus, we expect few
disorder loops: we will use the low-temperature expansion. In this picture, we can take � large enough
so that there is a high probability that 0 is not surrounded by any disorder loop and thus that the spin
at 0 is +1. Indeed, the probability that 0 is surrounded by a given loop of length k will be of order e�2�k

(i.e. super small) and the number of such loops is only of order k4k.
• Formal proof:

– we need to bound uniformly in �, E⌦�

+,� [�0] � C > 0.
– using the low temperature expansion: if N0 is the number of disorder loops surrounding 0,

E
⌦�

+,� [�0] = P
⌦�

+,� [N0 is even]� P
⌦�

+,� [N0 is odd] = 2P⌦�

+,� [N0 is even]� 1

– Since P
⌦�

+,� [N0 is even] � P
⌦�

+,� [N0 = 0], if we show that P
⌦�

+,� [N0 = 0] > 1
2 uniformly in � we will

have shown the theorem. Equivalently, we show that P
⌦�

+,� [N0 < 0] < 1
2

– Now

P
⌦�

+,� [N0 < 0] = P
⌦�

+,� [[� loop surrounds 0 {� is a disorder loop}]



X

� loop surrounds 0

P
⌦�

+,� [� is a disorder loop]



X

k

X

� surrounds 0, length k

P
⌦�

+,� [� is a disorder loop]

– We can bound
P

� surrounds 0, length k P
⌦�

+,� [� is a disorder loop]:
⇤ if � surround 0 and is of length k, P⌦�

+,� [� is a disorder loop]  e
�2�k

· If � is a configuration such that � is a disorder loop (i.e. if x ⇠ y and x is inside � and y

is outside, then �(x) 6= �(y)), then the energy of � splits into [1]-the energy of � inside
�, i.e. the energy of �1 := �|Int(�) [2]-the energy across � [3]-the energy of � outside �, ,
i.e. the energy of �2 := �|Out(�):

H(�) = H(�1) +H(�2) + |�|

where |�| is the length of �.
· We consider the spin-flip operation inside �, i.e using the same notations, ◆(�) is equal

to ��1 inside � and �2 outside �. It is a bijection between configurations where � is a
disorder loop, and configuration where all the spins across � agrees (we will say that � is
an order loop). If � is a disorder loop of �:

H(◆(�)) = H(�1) +H(�2)� |�| = H(�)� 2 |�|

and thus, if � is an order loop of �

H(◆(�)) = H(�) + 2 |�|

· Hence

P
⌦�

+,� [� is a disorder loop] =
X

�|� is a disorder loop

e
��H(�)

Z�

=
X

�|� is an order loop

e
��H(◆(�))

Z�

= e
�2�|�|

X

�|� is an order loop

e
��H(�)

Z�
 e

�2�|�|

since
P

�|� is an order loop
e
��H(�)

 Z� =
P

� e
��H(�).

⇤ the number of loops � of length k which surrounds 0 is smaller than k4k (uniformly in �)
· consider the last point on the y = 0 axis where the loop crosses 0: ⇠

k
2  k choices.

· then the number of loops which begins at this point and of length k is saller than 4k.
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⇤ Thus
P

� surrounds 0, length k P [� is a disorder loop]  k4ke�2�k

– Thus P [N0 < 0] 
P

k�0 k4
k
e
�2�k which can be made as small as one wants by considering � large

enough.

1.5.6. Dual Peierls argument.
• Theorem: If � > 0 is small, then h�0i

⌦
+,� = 0.

• The idea is that since we consider � ⌧ 1, we are in the high temperature regime and thus, we expect
the “influence” lines between the spin at 0 and the +1 spins on the boundary to be very lengtly and thus
not to contribute a lot: we will use the high-temperature expansion. In this picture, in order to reach
the boundary, an “influence” line need to do at least ⇠ 1/� steps, so if the overall contribution is finite,
this truncation will lead to a vanishing magnetisation.

• Formal proof:
– We show that lim�!0 E

⌦�

+,� [�0] = 0
– Using the the high temperature expansion,

E
⌦�

+,� [�0] =

P
E⇢E,@E�{0}⇢@⌦�

(tanh�)#E

P
E⇢E,@E⇢@⌦�

(tanh�)#E

– For any E ⇢ E, @E�{0} ⇢ @⌦�, there exists a unique path p : 0 ! @⌦� and an unique subset Ẽ ⇢ E

with @Ẽ ⇢ @⌦� such that E = Ẽ[p. Using this notation, (tanh�)#E = (tanh�)#p (tanh�)#Ẽ and
thus, using this new parametrization:

E
⌦�

+,� [�0] =
X

p:0!@⌦�

tanh#p (�)

P
Ẽ⇢E\⇡:@Ẽ⇢@⌦�\⇡

tanh#Ẽ (�)
P

E⇢E:@E⇢@⌦�
tanh#E (�)

which implies, since
P

Ẽ⇢E\⇡:@Ẽ⇢@⌦�\⇡
tanh#Ẽ (�) 

P
E⇢E:@E⇢@⌦�

tanh#E (�) that

E
⌦�

+,� [�0] 
X

p:0!@⌦�

tanh#p (�) 
X

k

tanhk(�)#{p : 0 ! @⌦�, |p| = k}.

– Now, we have
⇤ for any p : 0 ! @⌦�, when � is small enough, the length |p| �

C
� where C is a constant which

depends only on the domain ⌦.
⇤ For any k, # {p : 0 ! @⌦� : |p|  k}  4k.

– So, E⌦�

+,� [�0] 
P

k�C/� [4 tanh(�)]
k and thus, if we choose � small enough, this goes to 0 as � ! 0.

1.5.7. Kramer-Wannier duality.

• It remains to understand what could be �c = sup
n
�, h�0i

+
� = 0

o
.

• Note that the high temperature expansion of Z (with free boundary conditions)

Z /

X

E⇢E,@E=;

tanh(�)#E

and the low temperature expansion of Z of the Ising model on the dual graph (with free boundary
conditions)

ZA /

X

E⇢E,@E=;

�
e
�2�
�#E

look the same.
• Indeed, we have exchanged

– The graph ⌦⇤

� $ ⌦� and its dual
– The boundary conditions + $ free
– The parameter e

�2�
$ tanh�. Let’s call �

⇤ the parameter such that tanh (�⇤) = e
�2� : if �

increases, �⇤ decreases.
• One can show that the critical point is actually the self-dual point � = �

⇤, i.e. when � = 1
2 ln

�p
2 + 1

�
.
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1. Dimer Model

1.1. Generalities about the dimer model.

• We consider random dimer tiling (i.e. domino covering or perfect matching) of a given graph.
• This model exhibits an extremely rich behavior and many more ’physical’ models can be mapped to it.
• The dimer model is very well understood on bipartite (i.e. 2-colorable) planar graphs.
• This lecture is focused on the dimer model on square grid domains (subgraphs of Z2).

1.2. Number of domino tilings of a checkerboard: statement. Today, we want to prove a classical theorem
about dimer counting [Kas61, FiTe61]:

• The number of domino tilings of an p× q checkerboard is given by (unless pq is odd)
√

√

√

√

√

∣

∣

∣

∣

∣

∣

p
∏

j=1

q
∏

k=1

2 cos

(

πj

p+ 1

)

+ 2i cos

(

πk

q + 1

)

∣

∣

∣

∣

∣

∣

.

• The proof of this result will teach us interesting things about the dimer model.

1.3. Key steps of the proof: Two main parts:

• Write the number of domino tilings in terms of the determinant of a matrix.
• Diagonalize the matrix and take the product of the eigenvalues.

1.4. Preliminary result: number of domino tilings as a permanent.

• Consider a square grid domain G with black vertices B = {b1, . . . , bn} and white vertices W = {w1, . . . , wn}
(we color the vertices in such a way that adjacent vertices are of different colors).

• (Reduced) adjacency matrix A of G: an n× n matrix (abw)b∈B,w∈W
indexed by the black/white vertices

of G such that abw = 1 if b ∼ w and abw = 0 otherwise.
• Permanent of A: Per (A) =

∑

σ∈Sn
ab1wσ(1)

· · ·abnwσ(n)
(like the determinant without the signature).

• In the sum
∑

σ∈Sn
ab1wσ(1)

· · · abnwσ(n)
, we get a nonzero term whenever b1 ∼ wσ(1), . . . , bn ∼ wσ(n), i.e.

〈

b1wσ(1)

〉

, ...,
〈

bnwσ(n)

〉

is a dimer cover.
• So: Per (A) = #dimer covers (this works for any bipartite graph),
• Inconvenient: this not very useful. Unlike the determinant, the permanent is very hard to compute and

does not have good properties.

1.5. Next step: number of domino tilings as a determinant.

• Kasteleyn matrix K = (kbw)b∈B,w∈W
for the square grid (can be generalized to other planar graphs):

– kbw = 1 if 〈bw〉 is a horizontal edge,
– kbw = i =

√
−1 if 〈bw〉 is a vertical edge and

– kbw = 0 otherwise.
• Theorem: |detK| = #dimer covers of G.

– Proof: we expand:

detK =
∑

σ∈Sn

ε (σ) kb1wσ(1)
· · · kbnwσ(n)

.

– As before, all nonzero terms correspond to a dimer tiling. To get the result, enough to show the
following lemma:

• Lemma: Let σ and σ̃ be two permutation corresponding to nonzero terms. Then

ε (σ) kb1wσ(1)
· · · kbnwσ(n)

= ε (σ̃) kb1wσ̃(1)
· · · kbnwσ̃(n)

.

– Let T and T̃ be the corresponding dimer tilers. If we superpose T and T̃ (i.e. take the XOR T ⊕ T̃ ).
we get a collection of loops on G.

– We can move from T to T̃ by ’rotating’ the dimers of T along each loop.
1
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– We can suppose that T ⊕ T̃ just consists of one loop bi1wi1 · · · bikwik and that

〈bi1wi1〉 , . . . , 〈bikwik〉 ∈ T and 〈bi1wik〉 , . . . , 〈bikwi1 〉 ∈ T̃ .

– We have that σ = (i1 . . . ik) ◦ σ̃ and ε (σ) = (−1)k+1
ε (σ̃).

– To get the desired result

ε (σ) kb1wσ(1)
· · · kbnwσ(n)

= ε (σ̃) kb1wσ̃(1)
· · · kbnwσ̃(n)

one should check that

kb1wσ(1)
· · · kbnwσ(n)

= (−1)k+1
kb1wσ̃(1)

· · · kbnwσ̃(n)
.

– Provided by the following lemma, using that the number of vertices inside the loop bi1wi1 · · · bikwik

is even (it can be tiled by dimers):
• Lemma: for any cycle b1w1 . . . bkwk, if m1 = kb1w1kb2w2 . . . kbkwk

and m2 = kb2w1kb3w2 . . . kb1wk
, we have

that m1 = (−1)"+k+1
m2, where $ is the number of vertices strictly inside the cycle.

– Proof: by induction (check that when one adds a face to the domain inside the cycle, the property
is maintained).

1.6. Computing the determinant.

• Now that we have |detK| = #dimer tilings, how to get the formula for the number of tilings of an p× q
checkerboard, with 2n vertices?

• Consider the (extended) Kasteleyn matrix: it is the 2n× 2n matrix K̃ =

(

0 K
KT 0

)

.

– K̃ is simply the matrix indexed by {b1, . . . , bn, w1, . . . , wn} (in that order) such that kvw = 1 if 〈vw〉
is a horizontal edge, kvw = i is 〈vw〉 is vertical and kvw = 0 otherwise.

– We have that
∣

∣

∣
det K̃

∣

∣

∣
= |detK|2 (easy to see from the expansion of the determinant).

• It remains to show that:

det K̃ =
p
∏

j=1

q
∏

k=1

(

2 cos

(

πj

p+ 1

)

+ 2i cos

(

πk

q + 1

))

• How to show that?
– Let us find p× q independent eigenvectors of K̃ and compute their eigenvalues.
– Identify the vectors indexed by the vertices with functions defined on the checkerboard {1, . . . , p}×

{1, . . . , q}. We have
(

K̃f
)

(x, y) = f (x+ 1, y) + f (x− 1, y) + i (f (x, y + 1) + f (x, y − 1)) ,

where f is set to 0 when taken outside of the range.

– For j ∈ {1, . . . , p} and k ∈ {1, . . . , q}, let z := e
iπj
p+1 and w := e

iπk
q+1 and consider the vector

f jk (x, y) :=
(

zx − z−x
) (

wy − w−y
)

= −4 sin

(

πjx

p+ 1

)

sin

(

πky

q + 1

)

,

notice that f jk is zero when x = 0, p+ 1 or y = 0, q + 1.
– We have that f jk

(x,y) is an eigenvector of K̃, of eigenvalue λ = z + 1
z
+ i

(

w + 1
w

)

: one can see that
(

K̃f
)

(x, y) = λf jk (x, y)

(we set f jk (x, y) = 0 if either x or y go outside of the checker board)
– Remark: we could have use the results from the Heat Equation Section:

∗ We consider Mnf(x) = f(x + 1) + f(x − 1) defined on the set of function on {0, . . . , n + 1}
with boundary conditions f(0) = f(n+ 1) = 0.

∗ If f is an eigenvector of Mp, Mpf = λf and g is an eigenvector of Mq, Mqg = µg then
ϕ(x, y) = f(x)g(y) is an eigenvector of K̃ with eigenvalue λ+ iµ.

∗ We have already seen in the Heat Equation section that the eigenvalues of Mn are 2 cos
(

πj
n+1

)

,

thus the eigenvalues of K̃ are 2 cos
(

πj
p+1

)

+ 2i cos
(

πk
q+1

)

.

– Hence det K̃ is the product of the eigenvalues (the eigenvectors are independent, as they have distinct
eigenvalues).


